40 resultados para heat increment of feeding
Resumo:
Hybrid iron oxide-gold nanoparticles (HNPs) have shown potential in cancer therapy as agents for tumour ablation
and thermal switches for targeted drug release. Heat generation occurs by exploitation of the surface plasmon
resonance of the gold coating, which usually occurs at the maximum UV absorption wavelength. However, lasers
at such wavelength are often expensive and highly specialised. Here, we report the heating and monitoring of heat
dissipation of HNPs suspended in agar phantoms using a relatively inexpensive Ng: YAG pulsed 1064 nm laser source.
The particles experience heating of up to 40°C with a total area of heat dissipation up to 132.73 mm2 from the 1 mm
diameter irradiation point after 60 seconds. This work reports the potential and possible drawbacks of these particles
for translation into cancer therapy based on our findings.
Resumo:
Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.
Resumo:
Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.
Resumo:
Chlorination of wheat flour in the EU countries has been replaced in recent years, to some extent, by heat treated flour which is used to produce high ratio cakes. Heat treated flour allows high ratio recipes to be developed which generate products with longer shelf life, finer texture, moist crumb and sweeter taste. The mechanism by which heat treatment improves the flour is not fully understood, but it is known that during the heat treatment process, protein denaturation and partial gelatinisation of the starch granules occurs, as well as an increase in batter viscosity. Therefore, it is important to optimize the flour heat treatment process, in order to enhance baking quality. Laboratory preparation of heat treated base wheat flour (culinary, soft, low protein) was carried out in a fluidised bed drier using a range of temperatures and times. The gluten was extracted from the final product and its quality was tested, to obtain objective and comparative information on the extent of protein denaturation. The results indicated that heat treatment of flour decreases gluten extensibility and partial gelatinisation of the starch granules occurred. After heat treatment the gluten appeared to retain moisture. The optimum time/temperature for the heat treatment of base flour was 120-130°C for 30 min with moisture content of ˜12.5%.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Systematic experiments have been carried out on the thermal and rheological behaviour of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], and, for the first time, on the forced convective heat transfer of an ionic liquid under the laminar flow conditions. The results show that the thermal conductivity of the ionic liquid is similar to 0.13 W m(-1) K-1, which is almost independent of temperature between 25 and 40 degrees C. Rheological measurements show that the [C(4)mim][NTf2] liquid is a Newtonian fluid with its shear viscosity decreasing with increasing temperature according to the exponential law over a temperature range of 20-90 degrees C. The convective heat transfer experiments demonstrate that the thermal entrance length of the ionic liquid is very large due to its high viscosity and low thermal conductivity. The convective heat transfer coefficient is observed to be much lower than that of distilled water under the same conditions. The convective heat transfer data are also found to fit well to the convectional Shah's equation under the conditions of this work. (C) 2007 Elsevier Inc. All rights reserved.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Resumo:
The evaporator is an important component in the Organic Rankine Cycle (ORC)-based Waste Heat Recovery (WHR) system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
Resumo:
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.
Resumo:
Numerical predictions of the turbulent flow and heat transfer of a stationary duct with square ribs 45° angled to the main flow direction are presented. The rib height to channel hydraulic diameter is 0.1, the rib pitch to rib height is 10. The calculations have been carried out for a bulk Reynolds number of 50,000. The flows generated by ribs are dominated by separating and reattaching shear layers with vortex shedding and secondary flows in the cross-section. The hybrid RANS-LES approach is adopted to simulate such flows at a reasonable computation cost. The capability of the various versions of DES method, depending the RANS model, such as DES-SA, DES-RKE, DES-SST, have been compared and validated against the experiment. The significant effect of RANS model on the accuracy of the DES prediction has been shown. The DES-SST method, which was able to reproduce the correct physics of flow and heat transfer in a ribbed duct showed better performance than others.
Resumo:
This work addresses the experimental measurements of the pressure (0.10 <p/MPa <10.0) and temperature (293.15 <T/K <393.15) dependence of the density and derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, the thermal pressure coefficient, and the pressure dependence of the heat capacity of several imidazolium-based ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]; 3-methyl-1-octylimidazolium tetrafluoroborate, [omim][BF4]; 1-hexyl-3-methylimidazolium hexafluorophosphate, [hmim][PF6]; 3-methyl-1-octylimidazolium hexafluorophosphate, [omim][PF6]; 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, [bmmim][PF6]; and 1-butyl-3-methylimidazolium trifluoromethansulfonate, [bmim][CF3SO3]. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length, the number of cation substitutions, and the anion influence on the properties under study. The influence of water content in the density was also studied for the most hydrophobic IL used, [omim][PF6]. A simple ideal-volume model was employed for the prediction of the imidazolium molar volumes at ambient conditions, which proved to agree well with the experimental results.
Resumo:
Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The photophysical properties of lanthanide complexes have been studied extensively; however, fundamental parameters such as the intrinsic quantum yield as well as radiative and nonradiative decay rates are difficult or even impossible to measure experimentally. Herein, a photoacoustic (PA) method is proposed to determine the intrinsic quantum yield of lanthanide complexes with lifetimes in the order of milliseconds. This method is used to determine the intrinsic quantum yields for europium (III)-containing metallomesogens as well as terbium(III) complexes. The results show that the PA signal is sensitive to both the lifetime and the ratio of the fast-to-slow heat component of the samples. It is found that there is an efficient ligand sensitization and a moderate intrinsic quantum yield for the complexes. The intrinsic quantum yield of Eu3+ in the metallomesogens exhibits an obvious increase upon the isotropic liquid to smectic A transition. The proposed PA method is quite simple, and con contribute to a clearer understanding of the photophysical processes in luminescent lanthanide complexes.
Resumo:
Feeding ability and motivation were assessed in the edible crab, Cancer pagurus, to investigate how the fishery practice of de-clawing may affect live crabs returned to the sea. Crabs were either induced to autotomise one claw, or were only handled, before they were offered food. Initially, autotomised and handled crabs were offered mussels, Mytilis edulis, a large part of their natural diet. After 3 days, both autotomised and handled crabs were then offered fish, a more readily handled food source. Autotomy induced crabs consumed significantly fewer mussels and less mussel mass, but ate significantly more mass of fish. This indicates that the effect of autotomy was a reduction of ability to feed on mussels rather than a general reduction of feeding motivation. The discontinuation of claw removal needs to be considered, both for the sustainability of the fishery and animal welfare concerns. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cooperative MIMO (Multiple Input–Multiple Output) allows multiple nodes share their antennas to emulate antenna arrays and transmit or receive cooperatively. It has the ability to increase the capacity for future wireless communication systems and it is particularly suited for ad hoc networks. In this study, based on the transmission procedure of a typical cooperative MIMO system, we first analyze the capacity of single-hop cooperative MIMO systems, and then we derive the optimal resource allocation strategy to maximize the end-to-end capacity in multi-hop cooperative MIMO systems. The study shows three implications. First, only when the intra-cluster channel is better than the inter-cluster channel, cooperative MIMO results in a capacity increment. Second, for a given scenario there is an optimal number of cooperative nodes. For instance, in our study an optimal deployment of three cooperative nodes achieve a capacity increment of 2 bps/Hz when compared with direct transmission. Third, an optimal resource allocation strategy plays a significant role in maximizing end-to-end capacity in multi-hop cooperative MIMO systems. Numerical results show that when optimal resource allocation is applied we achieve more than 20% end-to-end capacity increment in average when compared with an equal resource allocation strategy.
Resumo:
Deposit-feeding holothurians employ a range of feeding and digestive strategies depending on the Particular environment to which they are adapted. Habitat and feeding specialisation is reflected in the tentacles, which show high diversity.