175 resultados para harmonic number
Resumo:
The generation of extremely bright coherent X-ray pulses in the femtosecond and attosecond regime is currently one of the most exciting frontiers of physics - allowing, for the first time, measurements with unprecedented temporal resolution(1-6). Harmonics from laser - solid target interactions have been identified as a means of achieving fields as high as the Schwinger limit(2,7) (E = 1.3 x 10(16) V m(-1)) and as a highly promising route to high-efficiency attosecond (10(-18) s) pulses(8) owing to their intrinsically phase-locked nature. The key steps to attain these goals are achieving high conversion efficiencies and a slow decay of harmonic efficiency to high orders by driving harmonic production to the relativistic limit(1). Here we present the first experimental demonstration of high harmonic generation in the relativistic limit, obtained on the Vulcan Petawatt laser(9). High conversion efficiencies (eta> 10(-6) per harmonic) and bright emission (> 10(22) photons s(-1) mm(-2) mrad(-2) (0.1% bandwidth)) are observed at wavelengths <4 nm ( the 'water-window' region of particular interest for bio-microscopy).
Resumo:
A comparative study of high harmonic generation (HHG) by atoms and ions with active p-electrons is carried out in the theoretical framework of the rescattering mechanism. The substate with m(l) = 0, i.e. zero orbital momentum projection along the electric vector of a linearly polarized laser wave, is found to give the major contribution to the HHG rate. Our calculations for HHG by an H atom in an excited 2p-state demonstrate that the rate for recombination into a final state with a different value of m(l) (= +/- 1), is higher for lower harmonic orders N, while for higher N (beyond the plateau domain) the difference vanishes. For species with closed electron shells, the m(l)-changing transitions are forbidden by the Pauli exclusion principle. We report absolute HHG rates for halogen ions and noble gas atoms at various intensities. These results demonstrate that the Coulomb binding potential of the atoms considerably enhances both the ionization and recombination steps in the rescattering process. However, the weak binding energy of the anions allows lower orders of HHG to be efficiently produced at relatively low intensities, from which we conclude that observation of HHG by an anion is experimentally feasible.
Resumo:
The mechanism of harmonic generation in the interaction of short laser pulses with solid targets holds the promise for the production of intense attosecond pulses. Using the three dimensional code ILLUMINATION we have performed simulations pertaining to an experimentally realizable parameter range by high power laser systems to become available in the near future. The emphasis of the investigation is on the coherent nature of the emission. We studied the influence of the plasma scale length on the harmonic efficiency, angular distribution and the focusability using a post processing scheme in which the far-field of the emission is calculated. It is found that the presence of an extended density profile reduces significantly the transverse coherence length of the emitted XUV light. The different stages of the interaction for two particular cases can be followed with the help of movies.
Resumo:
The first evidence of x-ray harmonic radiation extending to 3.3 A, 3.8 keV (order n > 3200) from petawatt class laser-solid interactions is presented, exhibiting relativistic limit efficiency scaling (eta similar to n(-2.5)-n(-3)) at multi-keV energies. This scaling holds up to a maximum order, n(RO)similar to 8(1/2)gamma(3), where gamma is the relativistic Lorentz factor, above which the first evidence of an intensity dependent efficiency rollover is observed. The coherent nature of the generated harmonics is demonstrated by the highly directional beamed emission, which for photon energy h nu > 1 keV is found to be into a cone angle similar to 4 degrees, significantly less than that of the incident laser cone (20 degrees).
Resumo:
In this brief, we propose a new Class-E frequency multiplier based on the recently introduced Series-L/Parallel-Tuned Class-E amplifier. The proposed circuit produces even-order output harmonics. Unlike previously reported solutions the proposed circuit can operate under 50% duty ratio which minimizes the conduction losses. The circuit also offers the possibility for increased maximum operating frequency, reduced peak switch voltage, higher load resistance and inherent bond wire absorption; all potentially useful in monolithic microwave integrated circuit implementations. In addition, the circuit topology suggested large transistors with high output capacitances can be deployed. Theoretical design equations are given and the predictions made using these are shown to agree with harmonic balance circuit simulation results.
Resumo:
This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.
Resumo:
The design procedure, fabrication and measurement of a Class-E power amplifier with excellent second- and third-harmonic suppression levels are presented. A simplified design technique offering compact physical layout is proposed. With a 1.2 mm gate-width GaAs MESFET as a switching device, the amplifier is capable of delivering 19.2 dBm output power at 2.41 GHz, achieves peak PAE of 60% and drain efficiency of 69%, and exhibits 9 dB power gain when operated from a 3 V DC supply voltage. When compared to the classical Class-E two-harmonic termination amplifier, the Class-E amplifier employing three-harmonic terminations has more than 10% higher drain efficiency and 23 dB better third-harmonic suppression level. Experimental results are presented and good agreement with simulation is obtained. Further, to verify the practical implementation in communication systems, the Bluetooth-standard GFSK modulated signal is applied to both two- and three-harmonic amplifiers. The measured RMS FSK deviation error and RMS magnitude error were, for the three-harmonic case, 1.01 kHz and 0.122%, respectively, and, for the two-harmonic case, 1.09 kHz and 0.133%. © 2007 The Institution of Engineering and Technology.