29 resultados para geostatistical
Resumo:
Mineral exploration programmes around the world use data from remote sensing, geophysics and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and economic minerals exploration. The fact that airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions means that they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. With increasing numbers of variables the inference of the cross-covariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximise information generated from the soil survey, to enable more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into a production of two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland where the history of mineral prospecting for precious and base metals dates from the 18th century. Vein-hosted, strata-bound and volcanogenic occurrences of mineralisation are found. The geostatistical technique was used to improve the resolution of soil geochemistry, collected one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data in the Bayesian approach and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular maximized information on mapped estimates of zinc, copper and lead. Greater delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential to investigate stratabound base metal deposits.
Resumo:
The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.
Resumo:
A geostatistical version of the classical Fisher rule (linear discriminant analysis) is presented.This method is applicable when a large dataset of multivariate observations is available within a domain split in several known subdomains, and it assumes that the variograms (or covariance functions) are comparable between subdomains, which only differ in the mean values of the available variables. The method consists on finding the eigen-decomposition of the matrix W-1B, where W is the matrix of sills of all direct- and cross-variograms, and B is the covariance matrix of the vectors of weighted means within each subdomain, obtained by generalized least squares. The method is used to map peat blanket occurrence in Northern Ireland, with data from the Tellus
survey, which requires a minimal change to the general recipe: to use compositionally-compliant variogram tools and models, and work with log-ratio transformed data.
Resumo:
This study applies spatial statistical techniques including cokriging to integrate airborne geophysical (radiometric) data with ground-based measurements of peat depth and soil organic carbon (SOC) to monitor change in peat cover for carbon stock calculations. The research is part of the EU funded Tellus Border project and is supported by the INTERREG IVA development programme of the European Regional Development Fund, which is managed by the Special EU Programmes Body (SEUPB). The premise is that saturated peat attenuates the radiometric signal from underlying soils and rocks. Contemporaneous ground-based measurements were collected to corroborate mapped estimates and develop a statistical model for volumetric carbon content (VCC) to 0.5 metres. Field measurements included ground penetrating radar, gamma ray spectrometry and a soil sampling methodology which measured bulk density and soil moisture to determine VCC. One aim of the study was to explore whether airborne radiometric survey data can be used to establish VCC across a region. To account for the footprint of airborne radiometric data, five cores were obtained at each soil sampling location: one at the centre of the ground radiometric equivalent sample location and one at each of the four corners 20 metres apart. This soil sampling strategy replicated the methodology deployed for the Tellus Border geochemistry survey. Two key issues will be discussed from this work. The first addresses the integration of different sampling supports for airborne and ground measured data and the second discusses the compositional nature of the VOC data.
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
Assessment of elevated concentrations of potentially toxic elements (PTE) in soils and the association with specific soil parent material have been the focus of research for a number of years. Risk-based assessment of potential exposure scenarios to identified elevated PTE concentrations has led to the derivation of site- and contaminant-specific soil guideline values (SGVs), which represent generic assessment criteria (GACs) to identify exceeded levels that may reflect an unacceptable risk to human health. A better understanding of the ‘bioavailable’ or ‘bioaccessible’ contaminant concentrations offers an opportunity to better refine contaminant exposure assessments. Utilizing a comprehensive soil geochemical dataset for Northern Ireland provided by the Tellus Survey (GSNI) in conjunction with supplementary bioaccessibility testing of selected soil samples following the Unified BARGE Method, this paper uses exploratory data analysis and geostatistical analysis to investigate the spatial variability of pseudo-total and bioaccessible concentrations of As, Cd, Co, Cr. Cu, Ni, Pb, U, V and Zn. The paper investigates variations in individual element concentrations as well as cross-element correlations and observed lithological/pedological associations. The analysis of PTE concentrations highlighted exceeded levels of GAC values for V and Cr and exceeded SGV/GAC values for Cd, Cu, Ni, Pb, and Zn. UBM testing showed that for some soil parent materials associated with elevated PTE concentrations e.g. the Antrim Lava Group with high Ni concentrations, the measured oral bioaccessible fraction was relatively low. For other soil parent materials with relatively moderate PTE concentrations, measured oral bioaccessible fraction was relatively high (e.g. the Gala Sandstone Group of the Southern Uplands-Down Longford Terrain). These findings have implications for regional human health risk assessments for specific PTEs.
Resumo:
Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.
Resumo:
Nitrogen Dioxide (NO2) is known to act as an environmental trigger for many respiratory illnesses. As a pollutant it is difficult to map accurately, as concentrations can vary greatly over small distances. In this study three geostatistical techniques were compared, producing maps of NO2 concentrations in the United Kingdom (UK). The primary data source for each technique was NO2 point data, generated from background automatic monitoring and background diffusion tubes, which are analysed by different laboratories on behalf of local councils and authorities in the UK. The techniques used were simple kriging (SK), ordinary kriging (OK) and simple kriging with a locally varying mean (SKlm). SK and OK make use of the primary variable only. SKlm differs in that it utilises additional data to inform prediction, and hence potentially reduces uncertainty. The secondary data source was Oxides of Nitrogen (NOx) derived from dispersion modelling outputs, at 1km x 1km resolution for the UK. These data were used to define the locally varying mean in SKlm, using two regression approaches: (i) global regression (GR) and (ii) geographically weighted regression (GWR). Based upon summary statistics and cross-validation prediction errors, SKlm using GWR derived local means produced the most accurate predictions. Therefore, using GWR to inform SKlm was beneficial in this study.
Resumo:
Arsenic (As) contamination of communal tubewells in Prey Vêng, Cambodia, has been observed since 2000. Many of these wells exceed the WHO As in drinking water standard of 10 µg/L by a factor of 100. The aim of this study was to assess how cooking water source impacts dietary As intake in a rural community in Prey Vêng. This aim was fulfilled by (1) using geostatistical analysis techniques to examine the extent of As contaminated groundwater in Prey Vêng and identify a suitable study site, (2) conducting an on-site study in two villages to measure As content in cooked rice prepared with water collected from tubewells and locally harvested rainwater, and (3) determining the dietary intake of As from consuming this rice. Geostatistical analysis indicated that high risk tubewells (>50 µg As/L) are concentrated along the Mekong River's east bank. Participants using high risk tubewells are consuming up to 24 times more inorganic As daily than recommended by the previous FAO/WHO provisional tolerable daily intake value (2.1 µg/kgBW/day). However, As content in rice cooked in rainwater was significantly reduced, therefore, it is considered to be a safer and more sustainable option for this region.
Resumo:
This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.
Resumo:
Geologic and environmental factors acting over varying spatial scales can control
trace element distribution and mobility in soils. In turn, the mobility of an element in soil will affect its oral bioaccessibility. Geostatistics, kriging and principal component analysis (PCA) were used to explore factors and spatial ranges of influence over a suite of 8 element oxides, soil organic carbon (SOC), pH, and the trace elements nickel (Ni), vanadium (V) and zinc (Zn). Bioaccessibility testing was carried out previously using the Unified BARGE Method on a sub-set of 91 soil samples from the Northern Ireland Tellus1 soil archive. Initial spatial mapping of total Ni, V and Zn concentrations shows their distributions are correlated spatially with local geologic formations, and prior correlation analyses showed that statistically significant controls were exerted over trace element bioaccessibility by the 8 oxides, SOC and pH. PCA applied to the geochemistry parameters of the bioaccessibility sample set yielded three principal components accounting for 77% of cumulative variance in the data
set. Geostatistical analysis of oxide, trace element, SOC and pH distributions using 6862 sample locations also identified distinct spatial ranges of influence for these variables, concluded to arise from geologic forming processes, weathering processes, and localised soil chemistry factors. Kriging was used to conduct a spatial PCA of Ni, V and Zn distributions which identified two factors comprising the majority of distribution variance. This was spatially accounted for firstly by basalt rock types, with the second component associated with sandstone and limestone in the region. The results suggest trace element bioaccessibility and distribution is controlled by chemical and geologic processes which occur over variable spatial ranges of influence.