32 resultados para generator coordinate Hartree-Fock basis sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two- and three-photon detachment rates have been obtained for F- using several expansions in the R-matrix Floquet approach. These rates are compared with other theoretical and experimental results. The use of Hartree-Fock wavefunctions for the ground state of F with addition of continuum electrons does not lead to agreement with experiment for two- and three-photon detachment. By adding correlation terms, agreement with experiment and other theoretical results is improved considerably, demonstrating the importance of electron correlation effects. However, convergence with respect to the wavefunction expansion cannot be established, we also study the intensity dependence of multiphoton detachment rates for F- at the Nd-YAG frequency. Due to the ponderomotive shift the three-photon detachment channel closes at an intensity of 8.5 x 10(11) W cm(-2) and the influence of this channel closure on the multiphoton detachment peaks is illustrated by determining the heights of the excess-photon peaks obtained using a Gaussian laser pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field-induced polarization (FIP) functions were proposed over two decades ago to improve the accuracy of calculated response properties, and the FIP functions in GTO form for H and C to F were tested on small molecules, with encouraging results. The concept of FIP,is now extended to all atoms up to Kr. New simplifying approximations for the description of asymptotic highest occupied atomic orbitals. (HOAOs) are introduced in this study. They provide the basis for STO and GTO exponents of a complete set of FIP functions from H to Kr, which are both listed for the convenience of the users. Tests on the polarizabilities of a series of atoms and molecules demonstrate that addition of the FIP basis functions to a series' of standard basis sets drastically improves the performance of all these basis sets compared to converged results. Moreover, the byproduct of this study (approximate asymptotic HOAOs) provides information for the construction of accurate basis sets for long-range ground state properties. (C) 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approximate Kohn-Sham (KS) exchange potential v(xsigma)(CEDA) is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. v(xsigma)(CEDA) is an explicit functional of the occupied KS orbitals, which has the Slater v(Ssigma) and response v(respsigma)(CEDA) potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities \psi(isigma)\(2), as well as "off-diagonal" ones from the occupied-occupied orbital products psi(isigma)psi(j(not equal1)sigma). Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies epsilon(isigma) are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-epsilon(isigma) values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of v(xsigma)(CEDA) appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains H-n over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond formation and rearrangement reactions in gas phase electron attachment were studied through dissociative electron attachment (DEA) to pentafluorotoluene (PFT), pentafluoroaniline (PFA) and pentafluorophenol (PFP) in the energy range 0-14 eV. In the case of PFA and PFP, the dominant processes involve formation of [M - HF](-) through the loss of neutral HF. This fragmentation channel is most efficient at low incident electron energy and for PFP it is accompanied by a substantial conformational change of the anionic fragment. At higher energy, HF loss is also observed as well as a number of other fragmentation processes. Thermochemical threshold energies have been computed for all the observed fragments and classical trajectories of the electron attachment process were calculated to elucidate the fragmentation mechanisms. For the dominant reaction channel leading to the loss of HF from PFP, the minimum energy path was calculated using the nudged elastic band method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands, or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100% for electron energy <1 eV and rapidly decreases for higher energies due to opening of many autoionization channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for W20+ and Au25+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the extraction of C5-C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number using silver(I)/N,N-dimethylbenzamide bis(trifluoromethylsulfonyl)imide ([Ag(DMBA)2][Tf2N]) or silver(I)/propylamine bis(trifluoromethylsulfonyl)imide ([Ag(PrNH2)2][Tf2N]) as the extracting agent. The separation performance of the system increased with increasing chain length. [Ag(DMBA)2][Tf2N] appeared to outperform [Ag(PrNH2)2][Tf2N] in terms of both selectivity and distribution coefficient. The [Ag(DMBA)2][Tf2N] system was successfully modeled using the universal quasi-chemical activity coefficient (UNIQUAC) model. These results support the potential future development of amine/amide-based ligands for producing soluble silver complexes useful for the separation of olefins from paraffins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio $^{2}\Sigma^+$ potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction (MRCI+Q)is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron Effective Core-Potential (ECP) and even-tempered augmented polarized core-valence basis sets (aug-pCV$n$Z-PP, n= 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy De for the X$^2\Sigma^+$ state (extrapolated to the CBS limit) is 16895.12 cm$^{-1}$ (2.094 eV), which agrees within 0.1$\%$ of a revised experimental value of <16910.6 cm$^{-1}$, while the calculated re is within 0.03 pm of the experimental result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although grasp (general-purpose relativistic atomic structure package) and flexible atomic code (fac) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.