27 resultados para gas production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate a new concept in the production of negative hydrogen ions in a low-pressure multicusp discharge. The discharge voltage is modulated to produce a non-Maxwellian, hot-electron plasma during the current pulse, followed by a cool Maxwellian electron plasma in the post discharge. This procedure, of separating in time the required hot and cold electron plasmas required for volume H- production, is called a temporal filter. The time evolution of the electron energy distribution function is measured using the time-resolved second derivative of a Langmuir probe characteristic. Time-resolved measurements of the negative ion density are made using laser photodetachment. The measurements show that the negative ion density in the center of the source, at a gas pressure of 0.07 Pa, increases by a factor of 2 when the discharge is switched off. At this low pressure the average H- beam current extracted from the source, when operated with a discharge current of 1 A in the pulse modulated mode exceeds the H- beam current from a 5 A continuously operated source. The increase in efficiency of the pulsed source is explained in terms of a two-step H- production mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities > 10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-liquid processing in microreactors remains mostly restricted to the laboratory scale due to the complexity and expenditure needed for an adequate numbering-up with a uniform flow distribution. Here, the numbering-up is presented for multi-phase (gas-liquid) flow in microreactor suitable for a production capacity of kg/h. Based on the barrier channels concept, the barrier-based micro/milli reactor (BMMR) is designed and fabricated to deliver flow non-uniformity of less than 10%. The BMMR consists of eight parallel channels all operated in the Taylor flow regime and with a liquid flow rate up to 150. mL/min. The quality of the flow distribution is reported by studying two aspects. The first aspect is the influence of different viscosities, surface tensions and flow rates. The second aspect is the influence of modularity by testing three different reaction channels type: (1) square channels fabricated in a stainless steel plate, (2) square channels fabricated in a glass plate, and (3) circular channels (capillaries) made of stainless steel. Additionally, the BMMR is compared to that of a single channel regard the slug and bubble lengths and bubble generation frequency. The results pave the ground for bringing multi-phase flow in microreactor one step closer for large scale production via numbering-up. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation pathways of isolated nucleosides, which could in turn influence direct radiation damage in DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H2 is considered to be a potential alternative fuel due to its high energy density by weight and working with pollution free. Currently, ethanol conversion to hydrogen has drawn much attention because it provides a viable way for H2 production from renewable resources. In this work, we combined theoretical and experimental efforts to study the reaction mechanism of ethanol steam reforming on Rh catalysts. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nano-sized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as: CH3CH2OH → CH3CH2O → CH3CHO → CH3CO → CH3+CO → CH2+CO → CH+CO → C+CO, followed by the water gas shift reaction to yield H2 and CO2. It was found that that the water gas shift reaction is paramount in the ethanol steam reforming process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) are popular designer green chemicals with great potential for use in diverse energy-related applications. Apart from the well-known low vapor pressure, the physical properties of ILs, such as hydrogen-bond-forming capacity, physical state, shape, and size, can be fine-tuned for specific applications. Natural gas hydrates are easily formed in gas pipelines and pose potential problems to the oil and natural gas industry, particularly during deep-sea exploration and production. This review summarizes the recent advances in IL research as dual-function gas hydrate inhibitors. Almost all of the available thermodynamic and kinetic inhibition data in the presence of ILs have been systematically reviewed to evaluate the efficiency of ILs in gas hydrate inhibition, compared to other conventional thermodynamic and kinetic gas hydrate inhibitors. The principles of natural gas hydrate formation, types of gas hydrates and their inhibitors, apparatuses and methods used, reported experimental data, and theoretical methods are thoroughly and critically discussed. The studies in this field will facilitate the design of advanced ILs for energy savings through the development of efficient low-dosage gas hydrate inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A counterintuitive scheme to produce ultracold hydrogen via fragmentation of laser cooled diatomic hydrides is presented where the final atomic H temperature is inversely proportional to the mass of the molecular parent. In addition, the critical density for formation of a Bose-Einstein condensate (BEC) at a fixed temperature is reduced by a factor (mH/mMH)3/2 over directly cooled hydrogen atoms. The narrow Feshbach resonances between a S01 atom and hydrogen are well suited to a tiny center of mass energy release necessary during fragmentation. With the support of ab initio quantum chemistry, it is demonstrated that BaH is an ideal diatomic precursor that can be laser cooled to a Doppler temperature of ∼26μK with just two rovibronic transitions, the simplest molecular cooling scheme identified to date. Preparation of a hydrogen atom gas below the critical BEC temperature Tc is feasible with present cooling technology, with optical pulse control of the condensation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.