23 resultados para fuzzy multi-objective linear programming (FMOLP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions. 
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms. 
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging. 
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab. 
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function. 
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized. 
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of appropriate Electric Vehicle (EV) charging strategies has been identified as an effective way to accommodate an increasing number of EVs on Low Voltage (LV) distribution networks. Most research studies to date assume that future charging facilities will be capable of regulating charge rates continuously, while very few papers consider the more realistic situation of EV chargers that support only on-off charging functionality. In this work, a distributed charging algorithm applicable to on-off based charging systems is presented. Then, a modified version of the algorithm is proposed to incorporate real power system constraints. Both algorithms are compared with uncontrolled and centralized charging strategies from the perspective of both utilities and customers. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents novel algorithms for learning Bayesian networks of bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in sampling k-trees (maximal graphs of treewidth k), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that k-tree. The approaches are empirically compared to each other and to state-of-the-art methods on a collection of public data sets with up to 100 variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
It has been argued that though correlated with mental health, mental well-being is a distinct entity. Despite the wealth of literature on mental health, less is known about mental well-being. Mental health is something experienced by individuals, whereas mental well-being can be assessed at the population level. Accordingly it is important to differentiate the individual and population level factors (environmental and social) that could be associated with mental health and well-being, and as people living in deprived areas have a higher prevalence of poor mental health, these relationships should be compared across different levels of neighbourhood deprivation.

Methods
A cross-sectional representative random sample of 1,209 adults from 62 Super Output Areas (SOAs) in Belfast, Northern Ireland (Feb 2010 – Jan 2011) were recruited in the PARC Study. Interview-administered questionnaires recorded data on socio-demographic characteristics, health-related behaviours, individual social capital, self-rated health, mental health (SF-8) and mental well-being (WEMWBS). Multi-variable linear regression analyses, with inclusion of clustering by SOAs, were used to explore the associations between individual and perceived community characteristics and mental health and mental well-being, and to investigate how these associations differed by the level of neighbourhood deprivation.

Results
Thirty-eight and 30 % of variability in the measures of mental well-being and mental health, respectively, could be explained by individual factors and the perceived community characteristics. In the total sample and stratified by neighbourhood deprivation, age, marital status and self-rated health were associated with both mental health and well-being, with the ‘social connections’ and local area satisfaction elements of social capital also emerging as explanatory variables. An increase of +1 in EQ-5D-3 L was associated with +1SD of the population mean in both mental health and well-being. Similarly, a change from ‘very dissatisfied’ to ‘very satisfied’ for local area satisfaction would result in +8.75 for mental well-being, but only in the more affluent of areas.

Conclusions
Self-rated health was associated with both mental health and mental well-being. Of the individual social capital explanatory variables, ‘social connections’ was more important for mental well-being. Although similarities in the explanatory variables of mental health and mental well-being exist, socio-ecological interventions designed to improve them may not have equivalent impacts in rich and poor neighbourhoods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.