46 resultados para fungus chamber
Resumo:
Arsenate resistance is exhibited by the ericoid mycorrhizal fungus Hymenoscyphus ericae collected from As-contaminated mine soils. To investigate the mechanism of arsenate resistance, uptake kinetics for arsenate (H(2)AsO(4)(-)), arsenite (H(3)AsO(3)), and phosphate (H(2)PO(4)(-)) were determined in both arsenate-resistant and -non-resistant H. ericae. The uptake kinetics of H(2)AsO(4)(-), H(3)AsO(3), and H(2)PO(4)(-) in both resistant and non-resistant isolates were similar. The presence of 5.0 microM H(2)PO(4)(-) repressed uptake of H(2)AsO(4)(-) and exposure to 0.75 mM H(2)AsO(4)(-) repressed H(2)PO(4)(-) uptake in both H. ericae. Mine site H. ericae demonstrated an enhanced As efflux mechanism in comparison with non-resistant H. ericae and lost approximately 90% of preloaded cellular As (1-h uptake of 0.22 micromol g(-1) dry weight h(-1) H(2)AsO(4)(-)) over a 5-h period in comparison with non-resistant H. ericae, which lost 40% of their total absorbed H(2)AsO(4)(-). As lost from the fungal tissue was in the form of H(3)AsO(3). The results of the present study demonstrate an enhanced H(3)AsO(3) efflux system operating in mine site H. ericae as a mechanism for H(2)AsO(4)(-) resistance. The ecological significance of this mechanism of arsenate resistance is discussed.
Resumo:
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.
Resumo:
Purpose. To evaluate the long-term graft survival in patients with flexible open-loop anterior chamber intraocular lenses (AC IOL). Methods. We retrospectively reviewed the records of patients with aphakic/pseudophakic bullous keratopathy who underwent penetrating keratoplasty and flexible open-loop AC IOL implantation in our institution from 1983 to 1988. Results. 79 eyes from 77 patients were included in the study. Mean follow-up was 50 months (range 1 to 123 months). At last follow-up 61 eyes (77.2%) had clear grafts. Among them, the visual acuity was = 20/40 in 14 eyes (23.0%), 20/50-20/100 in 22 eyes (36.1%), 20/200-20/400 in 9 eyes (14.8%) and = CF in 16 (26.2%). Increment of glaucoma medications and/or glaucoma surgery was the most frequent complication (37 eyes, 46,8%). Cystoid macular edema was newly diagnosed in 10 eyes (12.7%). Conclusions. Flexible, open-loop anterior chamber lens are a viable option in the treatment of patients with aphakic or pseudophakic bullous keratopathy undergoing penetrating keratoplasty.
Resumo:
Purpose. To evaluate the long-term graft survival and complications of flexible, open-loop anterior-chamber intraocular lenses in patients with penetrating keratoplasty for pseudophakic or aphakic bullous keratopathy. Methods. We reviewed charts of all consecutive patients who underwent penetrating keratoplasty for pseudophakic or aphakic bullous keratopathy combined with implantation of a flexible, open-loop, anterior-chamber intraocular lens at our institution between 1983 and 1988. One-hundred one eyes of 99 patients were evaluated. Graft-survival rates were calculated by using the Kaplan-Meier actuarial method. Results. Mean follow-up was 49.8 months (range. 1-144). The probability of graft survival at 1, 2, 4, 6, and 8 years was 93, 87, 78, 65, and 65%, respectively. A total of 25 (24.8%) grafts failed. Progressive corneal edema without signs of rejection was the most common finding in patients with failed grafts (10 eyes, 40%). The most frequent complication observed was newly diagnosed or worsening of preexisting glaucoma (46 eyes, 45.5%). Conclusions. Our long-term results support flexible, open-loop anterior-chamber intraocular lenses as a reasonable option, at the time of penetrating keratoplasty, in patients with pseudophakic and aphakic bullous keratopathy.
Resumo:
Purpose. To determine the agreement between observers in estimating the configuration of the human anterior chamber angle (ACA) using ultrasound biomicroscopy (UBM). Methods. Two masked clinicians used UBM images to estimate, in 41 eyes, the configuration of the ACA, especially (1) the position of contact between the peripheral iris and the inside of the eye wall, (2) the angularity of the approach to the ACA, and (3) the curvature of the peripheral iris. Agreement between observers was evaluated by the kappa statistic. Results. Inter-observer agreement in assessing the iris insertion (kappa = 0.79), angular width (Kappa = 0.95), and the peripheral iris curvature (kappa = 0.84) was high. Conclusions. The agreement between observers in evaluating the anterior chamber angle configuration by UBM was excellent.
Resumo:
Purpose: A peripheral iridotomy (PI) is the treatment of choice for pupillary block. In this study we investigated the effect of enlarging the size of a small PI on the anterior chamber angle in patients with angle closure using ultrasound biomicroscopy (UBM). Patients and Methods: Patients who had been treated with laser peripheral iridotomy for angle closure and were identified to have a small patent PI (<100 µm) with still appositionally closed anterior chamber angle were selected prospectively. The anterior chamber angle was assessed using UBM. The angle opening distance 500 µm from the scleral spur (AOD500) as well as the anterior and posterior chamber depth (ACD and PCD) 1000 µm from the scleral spur was measured. In addition, the ACD/PCD ratio was calculated. Afterwards, the PI was enlarged using an Nd: YAG laser and the UBM measurements were repeated as described above. Results: Six eyes of six patients were examined. After the enlargement of the PI the average AOD500 increased from 109 µm (±36) to 147 µm (±40) (p
Resumo:
Purpose: To determine the intra- and interobserver agreement in assessing the configuration of the human anterior chamber angle using ultrasound biomicroscopy (UBM). Methods: Two masked clinicians used ubm images to estimate, in 41 eyes, (a) the position of contact between the peripheral iris and the inside of the eye wall, (b) the angular size of the anterior chamber angle (ACA), and (c) the curvature of the peripheral iris. Both observers, masked to the previous results, examined the same images in a second session. Agreement was evaluated using the unweighted ? statistic. Results: Intraobserver agreement in assessing the iris insertion, angular width, and the iris curvature was high (range of ? values, 0.83-0.92). Interobserver agreement in evaluating the level of iris insertion (? = 0.79), the angular width (? = 0.95), and the iris curvature (? = 0.84) was also high. Conclusion: The agreement within the same observer and between observers in evaluating the ACA configuration by UBM was excellent.
Resumo:
The mapping problem is inherent to digital musical instruments (DMIs), which require, at the very least, an association between physical gestures and digital synthesis algorithms to transform human bodily performance into sound. This article considers the DMI mapping problem in the context of the creation and performance of a heterogeneous computer chamber music piece, a trio for violin, biosensors, and computer. Our discussion situates the DMI mapping problem within the broader set of interdependent musical interaction issues that surfaced during the composition and rehearsal of the trio. Through descriptions of the development of the piece, development of the hardware and software interfaces, lessons learned through rehearsal, and self-reporting by the participants, the rich musical possibilities and technical challenges of the integration of digital musical instruments into computer chamber music are demonstrated.
Resumo:
Ericoid mycorrhizas are believed to improve N nutrition of many ericaceous plant species that typically occur in habitats with impoverished nutrient status, by releasing amino acids from organic N forms. Despite the ubiquity of mycorrhizal formation the mechanisms and regulation of nutrient transport in mycorrhizal associations are poorly understood. We used an electrophysiological approach to study how amino acid transport characteristics of Calluna vulgaris were affected by colonization with the ericoid mycorrhiza fungus Hymenoscyphus ericae. Both the Vmax and Km parameters of amino acid uptake were affected by fungal colonization in a manner consistent with an increased availability of amino acid to the plant. The ecophysiological significance of altered amino acid transport in colonized root cells of C. vulgaris is discussed. © New Phytologist (2002).