50 resultados para fluoride sodium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La3FMo4O16 crystallizes in the triclinic crystal system with space group P (1) over bar [a = 724.86(2) pm, b = 742.26(2) pm, c = 1469.59(3) pm, a = 101.683(2)degrees, beta 102.118(2)degrees, gamma = 100.279(2)degrees] with two formula units per unit cell. The three crystallographically independent La3+ cations show a coordination number of nine each, with one F- and eight O2- anions forming distorted monocapped square antiprisms. The fluoride anion is coordinated by all three lanthanum cations to form a nearly planar triangle. Besides three crystallographically independent tetrahedral [MoO4](2-) units, a fourth one with a higher coordination number (CN = 4 +1) can be found in the crystal structure, forming a dimeric entity with a formula of [Mo2O8](4-) consisting of two edge-connected square pyramids. Several spectroscopic measurements were performed on the title compound, such as infrared, Raman, and diffuse reflectance spectroscopy. Furthermore, La3FMo4O16 was investigated for its capacity to work as host material for doping with luminescent active cations, such as Ce3+ or Pr3+. Therefore, luminescence spectroscopic as well as EPR measurements were performed with doped samples of the title compound. Both the pure and the doped compounds can be synthesized by fusing La2O3, LaF3 and MoO3 (ratio 4:1:12; ca. 1 % CeF3 and PrF3 as dopant, respectively) in evacuated silica ampoules at 850 degrees C for 7 d.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital hereditary endothelial dystrophy ( CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of molecular mechanics to model the geometry of the sodium complex of a calix[4] arene tetraester, in the 1,3-alternate conformation 1. Partial charges were assigned to the calixarene on the basis of semi-empirical (AM1, PM3, MNDO, INDO, CNDO and ZINDO) calculations and the binding of the sodium ion to the calixarene was modelled using molecular mechanics. Agreement between the optimised and X-ray structures of the complex was very good. The effect of placing the cation in different starting positions on the energy-minimised geometry of the complex is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The X-ray lines between 10.9 and 11.2 Å have attracted little attention but are of interest since they enable an estimate of the coronal abundance of Na to be made. This is of great interest in the continuing debate on the nature of the FIP (first ionization potential) effect. Aims. Observations of the lines with the Solar Maximum Mission Flat Crystal Spectrometer and a rocket-borne X-ray spectrometer are used to measure the Na/Ne abundance ratio, i.e. the ratio of an element with very low FIP to one with high FIP. Methods. New atomic data are used to generate synthetic spectra which are compared with the observations, with temperature and the Na/Ne abundance ratio as free parameters. Results. Temperature estimates from the observations indicate that the line emission is principally from non-flaring active regions, and that the Na/Ne abundance ratio is 0.07 ± 50%. Conclusions. The Na/Ne abundance ratio is close to a coronal value for which the abundances of low-FIP elements (FIP < 10 eV) are enhanced by a factor of 3 to 4 over those found in the photosphere. For low-temperature (Te 1.5 MK) spectra, the presence of lines requires that either a higher-temperature component is present or a revision of ionization or recombination rates is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of different electron acceptors are tested for efficacy in the oxidation of water to oxygen, photocatalysed by titanium dioxide. The highly UV-absorbing metal ion electron acceptors, Ce4+ and Fe3+, appear ineffective at high concentration (10(-2) M), due to UV-screening, but more effective at lower concentrations (10(-3) M). The metal-depositing electron acceptor, Ag+, is initially effective, but loses activity upon prolonged irradiation due to metal deposition which promotes electron-hole recombination as well as UV-screening the titania particles. Most striking of the electron acceptors tested is persulfate, particularly in alkaline solution (0.1 M NaOH). The kinetics of the photo-oxidation of water by persulfate, photocatalysed by titania are studied as a function of pH, [S2O82-] and incident light intensity (I). The initial rate of water oxidation increases with pH, is directly proportional to the concentration of persulfate present and depends upon I-0.6. The TiO2/alkaline persulfate photosystem is robust and shows very little evidence of photochemical wear upon repeated irradiation. The results of this work are discussed with regard to previous work in this area and current mechanistic thinking. The formal quantum efficiency of the TiO2/alkaline persulfate photosystem was estimated as ca. 2%. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial rate of oxidation of octan-2-ol and other secondary alcohols to their ketones with NaBrO3, mediated by RuO4 in an aqueous-CCl4 biphasic system, is greater with ultrasonic irradiation than by stirring alone. Under ultrasonic irradiation the initial rate of oxidation of octan-2-ol increases with increasing % duty cycle, [RuO4] and [NaBrO3]. The kinetics of alcohol oxidation appear to be closely linked with the oxidative dissolution of RuO2 to RuO4 by NaBrO3. The observed enhancement in rate with ultrasonic irradiation appear to be association, at least in part, with the increase in interfacial surface area via the formation of an emulsion of aqueous microdroplets containing NaBrO3 in the CCl4 layer containing the non-water-soluble secondary alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).