23 resultados para energy balance
Resumo:
Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.
Resumo:
There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. While summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour, and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease, and mortality compared to cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying / resting times, and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.
Resumo:
The electron beam ions traps (EBITs) are widely used to study highly charged ions (HCIs). In an EBIT, a high energy electron beam collides with atoms and ions to generate HCIs in the trap region. It is important to study the physics in the trap. The atomic processes, such as electron impact ionisation (EI), radiative recombination (RR), dielectronic recombination (DR) and charge exchange (CX), occur in the trap and numerical simulation can give some parameters for design, predict the composition and describe charge state evolution in an EBIT [Phys. Rev. A 43 (199 1) 4861]. We are presently developing a new code, which additionally includes a description of the overlaps between the ion clouds of the various charge-states. It has been written so that it can simulate experiments where various machine parameters (e.g. beam energy and current) can vary throughout the simulation and will be able to use cross- sections either based on scaling laws or derived from atomic structure calculations. An object-oriented method is used in developing the new software, which is an efficient way to organize and write code. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.
Resumo:
We consider a multiple femtocell deployment in a small area which shares spectrum with the underlaid macrocell. We design a joint energy and radio spectrum scheme which aims not only for co-existence with the macrocell, but also for an energy-efficient implementation of the multi-femtocells. Particularly, aggregate energy usage on dense femtocell channels is formulated taking into account the cost of both the spectrum and energy usage. We investigate an energy-and-spectral efficient approach to balance between the two costs by varying the number of active sub-channels and their energy. The proposed scheme is addressed by deriving closed-form expressions for the interference towards the macrocell and the outage capacity. Analytically, discrete regions under which the most promising outage capacity is achieved by the same size of active sub-channels are introduced. Through a joint optimization of the sub-channels and their energy, properties can be found for the maximum outage capacity under realistic constraints. Using asymptotic and numerical analysis, it can be noticed that in a dense femtocell deployment, the optimum utilization of the energy and the spectrum to maximize the outage capacity converges towards a round-robin scheduling approach for a very small outage threshold. This is the inverse of the traditional greedy approach. © 2012 IEEE.
Resumo:
Power electronics plays an important role in the control and conversion of modern electric power systems. In particular, to integrate various renewable energies using DC transmissions and to provide more flexible power control in AC systems, significant efforts have been made in the modulation and control of power electronics devices. Pulse width modulation (PWM) is a well developed technology in the conversion between AC and DC power sources, especially for the purpose of harmonics reduction and energy optimization. As a fundamental decoupled control method, vector control with PI controllers has been widely used in power systems. However, significant power loss occurs during the operation of these devices, and the loss is often dissipated in the form of heat, leading to significant maintenance effort. Though much work has been done to improve the power electronics design, little has focused so far on the investigation of the controller design to reduce the controller energy consumption (leading to power loss in power electronics) while maintaining acceptable system performance. This paper aims to bridge the gap and investigates their correlations. It is shown a more thoughtful controller design can achieve better balance between energy consumption in power electronics control and system performance, which potentially leads to significant energy saving for integration of renewable power sources.
Resumo:
The use of sustainable assessment methods in the UK is on the rise, anticipating the future regulatory trajectory towards zero carbon by 2016. The indisputable influence of sustainable rating tools on UK building regulations conveys the importance of evaluating their effectiveness in achieving true sustainable design, without adversely effecting human health and wellbeing. This paper reviews indoor air-quality (IAQ) issues addressed by UK sustainable assessment tools, and the potential trade-offs between building energy conservation and IAQ. The barriers to effective adoption of IAQ strategies are investigated, including recommendations, suggestions, and future research needs. The review identified a fundamental lack of IAQ criteria in sustainable assessment tools aimed at the residential sector. The consideration of occupants’ health and well-being should be paramount in any assessment scheme, and should not be overshadowed or obscured by the drive towards energy efficiency. A balance is essential.