18 resultados para energetic metal cluster deposition
Resumo:
Surface plasmon enhancement of laser ablation of thin Al films is examined with a view to its application in metal film patterning and nano-structuring. Al films, deposited on silica prisms, are first characterized by attenuated total reflection using a broadband UV source and appropriate interference filter. The films are subsequently subjected to excimer laser radiation of wavelength 248 nm under conditions both of direct incidence from the air side of the film, and of surface plasmon excitation in which light is incident through the prism at greater than critical angle. For a given level of ablation damage in a particular film the fluence required using the surface plasmon technique is 3-5 times less than that needed when direct incidence is used. This is roughly in line with the energy absorbed in the film. From a practical standpoint it is clear that ablation of metal films can be achieved with much lower fluences than has hitherto been possible, thus reducing the requirements on laser output and relaxing the power handling constraints on any input optical elements.
Resumo:
The intensity of surface enhanced Raman scattering from benzoic acid derivatives on mildly roughened, thermally evaporated Ag films shows a remarkably strong dependence on metal grain size. Large grained (slowly deposited) films give a superior response, by up to a factor of 10, to small grained (quickly deposited) films, with films of intermediate grain size yielding intermediate results. The optical field amplification underlying the enhancement mechanism is due to the excitation of surface plasmon polaritons (SPPs). Since surface roughness characteristics, as determined by STM, remain relatively constant as a function of deposition rate, it is argued that the contrast in Raman scattering is due to differences in elastic grain boundary scattering of SPPs (leading to different degrees of internal SPP damping), rather than differences in the interaction of SPPs with surface inhomogeneities.
Resumo:
The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.