30 resultados para eco-plasticity
Resumo:
Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency. © 2011 Elsevier B.V.
Resumo:
Silicon carbide (SiC) is an important orthopaedic material due to its inert nature and superior mechanical and tribological properties. Some of the potential applications of silicon carbide include coating for stents to enhance hemocompatibility, coating for prosthetic-bearing surfaces and uncemented joint prosthetics. This study is the first to explore nanomechanical response of single crystal 4H-SiC through quasistatic nanoindentation. Displacement controlled quasistatic nanoindentation experiments were performed on single crystal 4H-SiC specimen using a blunt Berkovich indenter (300 nm tip radius) at extremely fine indentation depths of 5 nm, 10 nm, 12 nm, 20 nm, 25 nm and 50 nm. Load-displacement curve obtained from the indentation experiments showed yielding or incipient plasticity in 4H-SiC typically at a shear stress of about 21 GPa (~an indentation depth of 33.8 nm) through a pop-in event. An interesting observation was that the residual depth of indent showed three distinct patterns: (i) Positive depth hysteresis above 33 nm, (ii) no depth hysteresis at 12 nm, and (iii) negative depth hysteresis below 12 nm. This contrasting depth hysteresis phenomenon is hypothesized to originate due to the existence of compressive residual stresses (upto 143 MPa) induced in the specimen by the polishing process prior to the nanoindentation
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Summary: Social work is a discipline that focuses on the person-in-the-environment. However, the social domains of influence have traditionally received more attention from the profession compared with the impact of the natural world on human well-being. With the development of ecological theories, and growing threats to the environment, this gap has been addressed and now the notion of eco-social work is attracting more interest. This article builds on this corpus of work by exploring, and augmenting, the thinking of the philosopher, David Abram, and his phenomenological investigation of perception, meaning, embodiment, language and Indigenous experience. The implications for eco-social work are then addressed.
Findings: The development of Abram’s philosophical thesis is charted by reviewing his presentation of the ideas of the European phenomenologists, Edmund Husserl and Maurice Merleau-Ponty. It is argued that Abram uses phenomenology to explore the character of perception and the sensual foundations of language which, in Indigenous cultures, are connected with the natural world. A gap in Abram’s thinking is then revealed showing the need to set human perception and language within an understanding of power. Overall, this re-worked thesis is underpinned by a meta-narrative in which ecology engages with philosophy, psychology and Indigenous experience.
Applications: By grounding such ideas in Slavoj Žižek’s construct of the sensuous event, three applications within social work are evinced, namely: (i) reflecting on the sensuous event in social work education; (ii) rekindling the sensuous event with Indigenous Peoples; and (iii) instigating the sensuous event with non-Indigenous populations.
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to M-b, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Resumo:
The technique of externally bonding fiber-reinforced polymer (FRP) composites has become very popular worldwide for retrofitting existing reinforced concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical failure mode in such strengthened structures. The bond behavior between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behavior has been extensively investigated experimentally, commonly using a single or double shear test of the FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with numerical simulation, chiefly due to difficulties in the accurate modeling of the complex behavior of concrete. This paper presents a simple but robust finite-element (FE) model for simulating the bond behavior in the entire debonding process for the single shear test. A concrete damage plasticity model is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in close agreement with test data, validating the model. In addition to accuracy, the model has two further advantages: it only requires the basic material parameters (i.e., no arbitrary user-defined parameter such as the shear retention factor is required) and it can be directly implemented in the FE software ABAQUS.
Resumo:
The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.
Resumo:
The authors appreciate the discusser’s interest in the original paper and for the valuable discussion, which provides the opportunity to clarify and reiterate a few points made in the original paper. The comments and questions raised by the discusser are addressed in the following sections.
Resumo:
Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.
Resumo:
The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. Results: Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. Conclusions: This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.