80 resultados para dynamic factor models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a model commonly used in dynamic traffic assignment the link travel time for a vehicle entering a link at time t is taken as a function of the number of vehicles on the link at time t. In an alternative recently introduced model, the travel time for a vehicle entering a link at time t is taken as a function of an estimate of the flow in the immediate neighbourhood of the vehicle, averaged over the time the vehicle is traversing the link. Here we compare the solutions obtained from these two models when applied to various inflow profiles. We also divide the link into segments, apply each model sequentially to the segments and again compare the results. As the number of segments is increased, the discretisation refined to the continuous limit, the solutions from the two models converge to the same solution, which is the solution of the Lighthill, Whitham, Richards (LWR) model for traffic flow. We illustrate the results for different travel time functions and patterns of inflows to the link. In the numerical examples the solutions from the second of the two models are closer to the limit solutions. We also show that the models converge even when the link segments are not homogeneous, and introduce a correction scheme in the second model to compensate for an approximation error, hence improving the approximation to the LWR model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to examine the structure of the statistics anxiety rating scale. Responses from 650 undergraduate psychology students throughout the UK were collected through an on-line study. Based on previous research three different models were specified and estimated using confirmatory factor analysis. Fit indices were used to determine if the model fitted the data and a likelihood ratio difference test was used to determine the best fitting model. The original six factor model was the best explanation of the data. All six subscales were intercorrelated and internally consistent. It was concluded that the statistics anxiety rating scale was found to measure the six subscales it was designed to assess in a UK population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Strengths and Difficulties Questionnaire (SDQ) is a widely used 25-item screening test for emotional and behavioral problems in children and adolescents. This study attempted to critically examine the factor structure of the adolescent self-report version. As part of an ongoing longitudinal cohort study, a total of 3,753 pupils completed the SDQ when aged 12. Both three- and five-factor exploratory factor analysis models were estimated. A number of deviations from the hypothesized SDQ structure were observed, including a lack of unidimensionality within particular subscales, cross-loadings, and items failing to load on any factor. Model fit of the confirmatory factor analysis model was modest, providing limited support for the hypothesized five-component structure. The analyses suggested a number of weaknesses within the component structure of the self-report SDQ, particularly in relation to the reverse-coded items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review aims to summarise our knowledge to date on the protein complement of the synovial fluid (S F). The tissues, structure and pathophysiology of the synovial joint are briefly described. The salient features of the S F proteome, how it is composed and the influence of arthritic disease are highlighted and discussed. The concentrations of proteins that have been detected and quantified in SF are drawn together from the literature on osteoarthritis, rheumatoid arthritis and juvenile idiopathic arthritis. The measurements are plotted to give a perspective on the dynamic range of protein levels within the SF. Approaches to proteomic analysis of SF to date are discussed along with their findings. From the recent literature reviewed within, it is becoming increasingly clear that analysis of the SF proteome as a whole, could deliver the most valuable differential diagnostic fingerprints of a number of arthritic disorders. Further development of proteomic platforms could characterise prognostic profiles to improve the cliniciads ability to resolve unremitting disease by existing and novel therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling patient flow in health care systems is vital in understanding the system activity and may therefore prove to be useful in improving their functionality. An extensively used measure is the average length of stay which, although easy to calculate and quantify, is not considered appropriate when the distribution is very long-tailed. In fact, simple deterministic models are generally considered inadequate because of the necessity for models to reflect the complex, variable, dynamic and multidimensional nature of the systems. This paper focuses on modelling length of stay and flow of patients. An overview of such modelling techniques is provided, with particular attention to their impact and suitability in managing a hospital service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple and flexible framework for forecasting the joint density of asset returns. The multinormal distribution is augmented with a polynomial in (time-varying) non-central co-moments of assets. We estimate the coefficients of the polynomial via the Method of Moments for a carefully selected set of co-moments. In an extensive empirical study, we compare the proposed model with a range of other models widely used in the literature. Employing a recently proposed as well as standard techniques to evaluate multivariate forecasts, we conclude that the augmented joint density provides highly accurate forecasts of the “negative tail” of the joint distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.