26 resultados para diode-pumped


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of similar to 100 K) in the diode resistance-temperature (R(D)-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R(D)-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report a case of malignant glaucoma after diode laser cyclophotocoagulation. METHOD: Case report. RESULTS: A 45-year-old man with uncontrolled secondary glaucoma in his right eye after corneoscleral graft and cataract extraction underwent diode laser cyclophotocoagulation. The right eye was aphakic, with an intact posterior capsule. Two weeks later, the patient presented with blurred vision, edematous cornea, and flat anterior chamber. The posterior capsule was touching the endothelium. Intraocular pressure was 20 mm Hg. Repeated Nd:YAG laser capsulotomy was effective in reversing the malignant glaucoma attack, and the anterior chamber deepened. CONCLUSION: Malignant glaucoma can occur after diode laser cyclophotocoagulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the effectiveness of diode laser trans-scleral cyclophotocoagulation (TSCPC) on intraocular pressure (IOP) in nine patients having raised IOP following use of silicone oil (SO) for retinal detachment (RD) surgery in a retrospective observational case series. Diode laser TSCPC was applied at a power setting of 1.75 to 2.5 watts, for two sec with a maximum of 30 applications. The patients were followed up for 40 to 312 weeks. The mean pre-laser IOP was 32.06 mm Hg (SD 7.32). The mean post-laser IOP at one month, three months and six months was 17.89 mm Hg (SD 8.23), 21.89 mm Hg (SD 8.16) and 21.67 mm Hg (SD 7.55) respectively. The final IOP (at the last follow-up) was 19.56 mm Hg (SD 7.85) (P=0.021). Seven of them had undergone SO removal. In our observation, effectiveness of TSCPC in long-term control of SO-induced ocular hypertension was limited as compared to short-term control of IOP.