21 resultados para diffraction and scattering measurements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple Gaussian pulse interactions and scattering in the nonlinear layered dielectric structures have been examined. The Gaussian pulses with different centre frequencies and lengths are incident at oblique angles on the finite stack of nonlinear dielectric layers. The properties of the reflected and refracted waveforms and the effects of the structure and the incident pulses' parameters on the mixing process are discussed. It is shown that the efficiency of forward emission at the combinatorial frequency can be considerably increased when the wavelengths of interacting pulses are close to the edges of electromagnetic bandgap. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis of any specific leaf that needs repair and gives an indication as to the course of action that is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands, or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100% for electron energy <1 eV and rapidly decreases for higher energies due to opening of many autoionization channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for W20+ and Au25+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In open-shell atoms and ions, processes such as photoionization, combination (Raman) scattering, electron scattering, and recombination are often mediated by many-electron compound resonances. We show that their interference (neglected in the independent-resonance approximation) leads to a coherent contribution, which determines the energy-averaged total cross sections of electron- and photon-induced reactions obtained using the optical theorem. In contrast, the partial cross sections (e.g., electron recombination or photon Raman scattering) are dominated by the stochastic contributions. Thus, the optical theorem provides a link between the stochastic and coherent contributions of the compound resonances. Similar conclusions are valid for reactions via compound states in molecules and nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.