19 resultados para d18O H2O


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of water and deuterium oxide on TiO2 surfaces was investigated in the dark as well as under UV(A) irradiation using in situ ATR-FTIR spectroscopy under oxygen and oxygen free conditions. Adsorption of H2O-D2O mixtures revealed an isotopic exchange reaction occurring onto the surface of TiO2 in the dark. Under UV(A) irradiation, the amount of both OH and OD groups was found to be increased by the presence of molecular oxygen. Furthermore, the photocatalytic formation of hydroperoxide under oxygenated condition has been recorded utilizing Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) spectroscopy which appeared as new band at 3483 cm-1. Different possible mechanisms are discussed in terms of the source of hydroxyl groups formed and/or hydration water on the TiO2 surface for the photocatalytic reaction and photoinduced hydrophilicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and photocatalytic degradation of acetate on TiO2 surfaces was investigated in H2O and D2O by ATR-FTIR and EPR Spectroscopy respectively. These studies were carried out in the dark and under UV(A) illumination to gain additional insights into the adsorption behaviour with the identification of paramagnetic species formed during the oxidation of acetate. Isotopic exchange during the adsorption of D2O on TiO2 surface led to different interactions between the adsorbate and OD groups. At different pH levels, several surface complexes of acetate can be formed such as monodentate, or bidentates. Under UV(A) irradiation of TiO2 aqueous suspensions, the formation of hydroxyl and methoxy radicals evidenced as the corresponding spin-adducts, were found to dominate in alkaline and acidic suspensions respectively. Two possible pathways for the oxidation of acetate have been suggested at different pH levels in solution in terms of the source of the spin adduct formed. These proposed pathways were found to be in good agreement with ATR-FTIR and EPR results.