141 resultados para cyclin dependent kinase inhibitor 2B
Resumo:
Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.
Resumo:
Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. The mechanism that CDK11(p58) induces apoptosis is not clear. Some evidences suggested beta1,4-galactosyltransferase 1 (beta1,4-GT 1) might participate in apoptosis induced by CDK11(p58). In this study, we demonstrated that ectopically expressed beta1,4-GT 1 increased CDK11(p58)-mediated apoptosis induced by cycloheximide (CHX). In contrast, RNAi-mediated knockdown of beta1,4-GT 1 effectively inhibited apoptosis induced by CHX in CDK11(p58)-overexpressing cells. For example, the cell morphological and nuclear changes were reduced; the loss of cell viability was prevented and the number of cells in sub-G1 phase was decreased. Knock down of beta1,4-GT 1 also inhibited the release of cytochrome c from mitochondria and caspase-3 processing. Therefore, the cleavage of CDK11(p58) by caspase-3 was reduced. We proposed that beta1,4-GT 1 might contribute to the pro-apoptotic effect of CDK11(p58). This may represent a new mechanism of beta1,4-GT 1 in CHX-induced apoptosis of CDK11(p58)-overexpressing cells.
Resumo:
The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting therapeutic response.
Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [Furlong et al., 2012 PMID:22069160] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vitro, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.
To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433, or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence, exemplified by a flattened morphology and down-regulation of phosphorylated Retinoblastoma (p-Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.
In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting response to standard treatment.
Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [1] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vito, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.
To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433 or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence resulting in a chracteristic flattened morphology and down-regulation of phosphorylated Retinoblastoma (p Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.
In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.
Resumo:
The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB) Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells with insulin-like growth factor-1 increased Mdm2 phosphorylation on Ser(166) and Ser(188) in a phosphatidylinositide 3'-OH kinase-dependent manner, and the treatment of both human embryonic kidney 293 and COS-1 cells with phosphatidylinositide 3'-OH kinase inhibitor LY-294002 led to proteasome-mediated Mdm2 degradation. Introduction of a constitutively active form of PKB together with Mdm2 into cells induced phosphorylation of Mdm2 at Ser(166) and Ser(188) and stabilized Mdm2 protein. Moreover, mouse embryonic fibroblasts lacking PKBalpha displayed reduced Mdm2 protein levels with a concomitant increase of p53 and p21(Cip1), resulting in strongly elevated apoptosis after UV irradiation. In addition, activation of PKB correlated with Mdm2 phosphorylation and stability in a variety of human tumor cells. These findings suggest that PKB plays a critical role in controlling of the Mdm2.p53 signaling pathway by regulating Mdm2 stability.
Resumo:
The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.
Resumo:
An early and critical event in beta2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent beta2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) beta2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3´,5´-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected beta2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in beta2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.
Resumo:
Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha /Akt-1), Although 3 ' -phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine, We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC50 of similar to0.22 muM. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine, Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.
Resumo:
Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.
Resumo:
The tyrosine kinase inhibitor (TKI) imatinib has transformed the treatment and outlook of chronic myeloid leukemia (CML); however, the development of drug resistance and the persistence of TKI-resistant stem cells remain obstacles to eradicating the disease. Inhibition of proteasome activity with bortezomib has been shown to effectively induce apoptosis in TKI-resistant cells. In this study, we show that exposure to the next generation proteasome inhibitor carfilzomib is associated with a decrease in ERK signaling and increased expression of Abelson interactor proteins 1 and 2 (ABI-1/2). We also investigate the effect of carfilzomib in models of imatinib-sensitive and -resistant CML and demonstrate a potent reduction in proliferation and induction of apoptosis in a variety of models of imatinib-resistant CML, including primitive CML stem cells. Carfilzomib acts synergistically with the TKIs imatinib and nilotinib, even in imatinib-resistant cell lines. In addition, we found that the presence of immunoproteasome subunits is associated with an increased sensitivity to carfilzomib. The present findings provide a rational basis to examine the potential of carfilzomib in combination with TKIs as a potential therapy for CML, particularly in imatinib-resistant disease.
Resumo:
As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.
IGF-1R inhibition sensitizes breast cancer cells to ATM-Related Kinase (ATR) inhibitor and cisplatin
Resumo:
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.