71 resultados para cyber-physical system (CPS)
Resumo:
Structural and kinetic aspects of 2-D irreversible metal deposition under potentiostatic conditions are analyzed by means of dynamic Monte Carlo simulations employing embedded atom potentials for a model system. Three limiting models, all considering adatom diffusion, were employed to describe adatom deposition. The first model (A) considers adatom deposition on any free substrate site on the surface at the same rate. The second model (B) considers adatom deposition only on substrate sites which exhibit no neighboring sites occupied by adatoms. The third model (C) allows deposition at higher rates on sites presenting neighboring sites occupied by adatoms. Under the proper conditions, the coverage (theta) versus time (t) relationship for the three cases can be heuristically fitted to the functional form theta = 1 - exp(-betat(alpha)), where alpha and beta are parameters. We suggest that the value of the parameter alpha can be employed to distinguish experimentally between the three cases. While model A trivially delivers a = 1, models B and C are characterized by alpha 1, respectively.
Resumo:
Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.
Resumo:
A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.
Resumo:
The amphiphilic association structures were determined in the system; water, Laureth 4 (approximately C-12(EO)(4)), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), using visual observation and small angle x-ray diffraction. The system showed a lamellar liquid crystal solubilizing the ionic liquid ([bmim][PF6]) to a maximum of 15%, an isotropic surfactant solution dissolving the ionic liquid to a maximum of 39%, an isotropic ionic liquid solution with less than 0.5% of water and surfactant and finally, an aqueous solution with only traces of surfactant and ionic liquid. The small angle x-ray diffraction results showed the ionic liquid to be solubilized into the lamellar liquid crystal without changing the dimensions of the amphiphile layer or the interlayer spacing dependence on the water content.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.
Resumo:
We study the conditions for probing the environment affecting an inaccessible system by means of continuous interaction and measurements performed only on a probe. The scheme exploits the statistical properties of the probe at its steady state and simple data postprocessing. Our results, highlighting the roles played by interaction and entanglement in this process, are both pragmatically relevant and fundamentally interesting.
Resumo:
The motion of a clarinet reed that is clamped to a mouthpiece and supported by a lip is simulated in the time-domain using finite difference methods. The reed is modelled as a bar with non-uniform cross section, and is described using a one-dimensional, fourth-order partial differential equation. The interactions with the mouthpiece Jay and the player's lip are taken into account by incorporating conditional contact forces in the bar equation. The model is completed by clamped-free boundary conditions for the reed. An implicit finite difference method is used for discretising the system, and values for the physical parameters are chosen both from laboratory measurements and by accurate tuning of the numerical simulations. The accuracy of the numerical system is assessed through analysis of frequency warping effects and of resonance estimation. Finally, the mechanical properties of the system are studied by analysing its response to external driving forces. In particular, the effects of reed curling are investigated.
Resumo:
Surface-enhanced Raman scattering (SERS) spectra from molecules adsorbed on the surface of vertically aligned gold nanorod arrays exhibit a variation in enhancement factor (EF) as a function of excitation wavelength that displays little correlation with the elastic optical properties of the surface. The key to understanding this lack of correlation and to obtaining agreement between experimental and calculated EF spectra lies with consideration of randomly distributed, sub-10 nm gaps between nanorods forming the substrate. Intense fields in these enhancement “hot spots” make a dominant contribution to the Raman scattering and have a very different spectral profile to that of the elastic optical response. Detailed modeling of the electric field enhancement at both excitation and scattering wavelengths was used to quantitatively predict both the spectral profile and the magnitude of the observed EF.
Resumo:
Nonclassical states of a mechanical mode at nonzero temperature are achieved in a scheme that combines radiation-pressure coupling to a light field and photon subtraction. The scheme embodies an original and experimentally realistic way to obtain mesoscopic quantumness by putting together two mature technologies for quantum control. The protocol is quasi-insensitive to mechanical damping.
Resumo:
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.
Resumo:
We give a physical interpretation of the recently demonstrated non-conservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a non-conservative force, and thus do net work around closed paths, by a formal non-invasive test procedure. Second, we show that the gain in atomic kinetic energy in time, generated by non-conservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that non-conservative forces work by angular momentum transfer.
Resumo:
We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.
Resumo:
We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.