26 resultados para correctness verification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the use of Varian radiotherapy dynamic treatment log (DynaLog) files to verify IMRT plan delivery as part of a routine quality assurance procedure. Delivery accuracy in terms of machine performance was quantified by multileaf collimator (MLC) position errors and fluence delivery accuracy for patients receiving intensity modulated radiation therapy (IMRT) treatment. The relationship between machine performance and plan complexity, quantified by the modulation complexity score (MCS) was also investigated. Actual MLC positions and delivered fraction of monitor units (MU), recorded every 50 ms during IMRT delivery, were extracted from the DynaLog files. The planned MLC positions and fractional MU were taken from the record and verify system MLC control file. Planned and delivered beam data were compared to determine leaf position errors with and without the overshoot effect. Analysis was also performed on planned and actual fluence maps reconstructed from the MLC control file and delivered treatment log files respectively. This analysis was performed for all treatment fractions for 5 prostate, 5 prostate and pelvic node (PPN) and 5 head and neck (H&N) IMRT plans, totalling 82 IMRT fields in ∼5500 DynaLog files. The root mean square (RMS) leaf position errors without the overshoot effect were 0.09, 0.26, 0.19 mm for the prostate, PPN and H&N plans respectively, which increased to 0.30, 0.39 and 0.30 mm when the overshoot effect was considered. Average errors were not affected by the overshoot effect and were 0.05, 0.13 and 0.17 mm for prostate, PPN and H&N plans respectively. The percentage of pixels passing fluence map gamma analysis at 3%/3 mm was 99.94 ± 0.25%, which reduced to 91.62 ± 11.39% at 1%/1 mm criterion. Leaf position errors, but not gamma passing rate, were directly related to plan complexity as determined by the MCS. Site specific confidence intervals for average leaf position errors were set at -0.03-0.12 mm for prostate and -0.02-0.28 mm for more complex PPN and H&N plans. For all treatment sites confidence intervals for RMS errors with the overshoot was set at 0-0.50 mm and for the percentage of pixels passing a gamma analysis at 1%/1 mm a confidence interval of 68.83% was set also for all treatment sites. This work demonstrates the successful implementation of treatment log files to validate IMRT deliveries and how dynamic log files can diagnose delivery errors not possible with phantom based QC. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage (MV) X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, incorporation of this dose at the planning stage of treatment has been suggested.

Methods: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay, irradiating DU-145 prostate cancer, H460 non-small cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 minutes and 15 minutes were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model.

Results: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact upon cell survival. These findings were in close agreement with the theoretical results.

Conclusions: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy.

Advances in Knowledge: There is a paucity of data in the literature on imaging effects in radiotherapy. This paper presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intralaminar damage model (IDM), based on continuum damage mechanics, was developed for the simulation of composite structures subjected to damaging loads. This model can capture the complex intralaminar damage mechanisms, accounting for mode interactions, and delaminations. Its development is driven by a requirement for reliable crush simulations to design composite structures with a high specific energy absorption. This IDM was implemented as a user subroutine within the commercial finite element package, Abaqus/Explicit[1]. In this paper, the validation of the IDM is presented using two test cases. Firstly, the IDM is benchmarked against published data for a blunt notched specimen under uniaxial tensile loading, comparing the failure strength as well as showing the damage. Secondly, the crush response of a set of tulip-triggered composite cylinders was obtained experimentally. The crush loading and the associated energy of the specimen is compared with the FE model prediction. These test cases show that the developed IDM is able to capture the structural response with satisfactory accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

]In modern radiotherapy, it is crucial to monitor the performance of all linac components including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method has been introduced in conjunction with an algorithm to investigate the stability of these systems during arc treatments with the aim of ensuring the accuracy of linac mechanical performance.


Methods

The Varian EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in MLC carriages as a result of linac rotation were separately investigated by acquisition of EPID images of a simple phantom comprised of 5 ball-bearings during arc delivery. A fast and robust software package was developed for automated analysis of image data. Twelve Varian linacs of different models were investigated.


Results

The average EPID sag was within 1 mm for all tested linacs. All machines showed less than 1 mm gantry sag. Changes in SDD values were within 1.7 mm except for three linacs of one centre which were within 9 mm. Values of EPID skewness and tilt were negligible in all tested linacs. The maximum sag in MLC leaf bank assemblies was around 1 mm. The EPID sag showed a considerable improvement in TrueBeam linacs.


Conclusion

The methodology and software developed in this study provide a simple tool for effective investigation of the behaviour of linac components with gantry rotation. It is reproducible and accurate and can be easily performed as a routine test in clinics.




Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a key generation system derived from the channel response of individual subcarrier in orthogonal frequency-division multiplexing (OFDM) systems. Practical aspects of the security were investigated by implementing our key generation scheme on a wireless open-access research platform (WARP), which enables us to obtain channel estimation of individual OFDM subcarriers, a feature not currently available in most commercial wireless interface cards. Channel response of individual OFDM subcarrier is usually a wide sense stationary random process, which allows us to find the optimal probing period and maximize the key generation rate. The implementation requires cross layer design as it involves interaction between physical and MAC layer. We have experimentally verified the feasibility and principles of key generation, and also evaluated the performance of our system in terms of randomness, key generation rate and key disagreement rate, which proves that OFDM subcarrier's channel responses are valid for key generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of  <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0  ±  0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates  >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.