39 resultados para cloud computing, hypervisor, virtualizzazione, live migration, infrastructure as a service
Resumo:
Recent trends in computing systems, such as multi-core processors and cloud computing, expose tens to thousands of processors to the software. Software developers must respond by introducing parallelism in their software. To obtain highest performance, it is not only necessary to identify parallelism, but also to reason about synchronization between threads and the communication of data from one thread to another. This entry gives an overview on some of the most common abstractions that are used in parallel programming, namely explicit vs. implicit expression of parallelism and shared and distributed memory. Several parallel programming models are reviewed and categorized by means of these abstractions. The pros and cons of parallel programming models from the perspective of performance and programmability are discussed.
Resumo:
Software-as-a-service (SaaS) is a type of software service delivery model which encompasses a broad range of business opportunities and challenges. Users and service providers are reluctant to integrate their business into SaaS due to its security concerns while at the same time they are attracted by its benefits. This article highlights SaaS utility and applicability in different environments like cloud computing, mobile cloud computing, software defined networking and Internet of things. It then embarks on the analysis of SaaS security challenges spanning across data security, application security and SaaS deployment security. A detailed review of the existing mainstream solutions to tackle the respective security issues mapping into different SaaS security challenges is presented. Finally, possible solutions or techniques which can be applied in tandem are presented for a secure SaaS platform.
Resumo:
Cloud computing technology has rapidly evolved over the last decade, offering an alternative way to store and work with large amounts of data. However data security remains an important issue particularly when using a public cloud service provider. The recent area of homomorphic cryptography allows computation on encrypted data, which would allow users to ensure data privacy on the cloud and increase the potential market for cloud computing. A significant amount of research on homomorphic cryptography appeared in the literature over the last few years; yet the performance of existing implementations of encryption schemes remains unsuitable for real time applications. One way this limitation is being addressed is through the use of graphics processing units (GPUs) and field programmable gate arrays (FPGAs) for implementations of homomorphic encryption schemes. This review presents the current state of the art in this promising new area of research and highlights the interesting remaining open problems.
Resumo:
A fully homomorphic encryption (FHE) scheme is envisioned as a key cryptographic tool in building a secure and reliable cloud computing environment, as it allows arbitrary evaluation of a ciphertext without revealing the plaintext. However, existing FHE implementations remain impractical due to very high time and resource costs. To the authors’ knowledge, this paper presents the first hardware implementation of a full encryption primitive for FHE over the integers using FPGA technology. A large-integer multiplier architecture utilising Integer-FFT multiplication is proposed, and a large-integer Barrett modular reduction module is designed incorporating the proposed multiplier. The encryption primitive used in the integer-based FHE scheme is designed employing the proposed multiplier and modular reduction modules. The designs are verified using the Xilinx Virtex-7 FPGA platform. Experimental results show that a speed improvement factor of up to 44 is achievable for the hardware implementation of the FHE encryption scheme when compared to its corresponding software implementation. Moreover, performance analysis shows further speed improvements of the integer-based FHE encryption primitives may still be possible, for example through further optimisations or by targeting an ASIC platform.
Resumo:
Cloud computing is a technological advancementthat provide resources through internet on pay-as-you-go basis.Cloud computing uses virtualisation technology to enhance theefficiency and effectiveness of its advantages. Virtualisation isthe key to consolidate the computing resources to run multiple instances on each hardware, increasing the utilization rate of every resource, thus reduces the number of resources needed to buy, rack, power, cool, and manage. Cloud computing has very appealing features, however, lots of enterprises and users are still reluctant to move into cloud due to serious security concerns related to virtualisation layer. Thus, it is foremost important to secure the virtual environment.In this paper, we present an elastic framework to secure virtualised environment for trusted cloud computing called Server Virtualisation Security System (SVSS). SVSS provide security solutions located on hyper visor for Virtual Machines by deploying malicious activity detection techniques, network traffic analysis techniques, and system resource utilization analysis techniques.SVSS consists of four modules: Anti-Virus Control Module,Traffic Behavior Monitoring Module, Malicious Activity Detection Module and Virtualisation Security Management Module.A SVSS prototype has been deployed to validate its feasibility,efficiency and accuracy on Xen virtualised environment.
Resumo:
Fully Homomorphic Encryption (FHE) is a recently developed cryptographic technique which allows computations on encrypted data. There are many interesting applications for this encryption method, especially within cloud computing. However, the computational complexity is such that it is not yet practical for real-time applications. This work proposes optimised hardware architectures of the encryption step of an integer-based FHE scheme with the aim of improving its practicality. A low-area design and a high-speed parallel design are proposed and implemented on a Xilinx Virtex-7 FPGA, targeting the available DSP slices, which offer high-speed multiplication and accumulation. Both use the Comba multiplication scheduling method to manage the large multiplications required with uneven sized multiplicands and to minimise the number of read and write operations to RAM. Results show that speed up factors of 3.6 and 10.4 can be achieved for the encryption step with medium-sized security parameters for the low-area and parallel designs respectively, compared to the benchmark software implementation on an Intel Core2 Duo E8400 platform running at 3 GHz.
Resumo:
Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.
Resumo:
The increasing adoption of cloud computing, social networking, mobile and big data technologies provide challenges and opportunities for both research and practice. Researchers face a deluge of data generated by social network platforms which is further exacerbated by the co-mingling of social network platforms and the emerging Internet of Everything. While the topicality of big data and social media increases, there is a lack of conceptual tools in the literature to help researchers approach, structure and codify knowledge from social media big data in diverse subject matter domains, many of whom are from nontechnical disciplines. Researchers do not have a general-purpose scaffold to make sense of the data and the complex web of relationships between entities, social networks, social platforms and other third party databases, systems and objects. This is further complicated when spatio-temporal data is introduced. Based on practical experience of working with social media datasets and existing literature, we propose a general research framework for social media research using big data. Such a framework assists researchers in placing their contributions in an overall context, focusing their research efforts and building the body of knowledge in a given discipline area using social media data in a consistent and coherent manner.
Resumo:
Homomorphic encryption offers potential for secure cloud computing. However due to the complexity of homomorphic encryption schemes, performance of implemented schemes to date have been unpractical. This work investigates the use of hardware, specifically Field Programmable Gate Array (FPGA) technology, for implementing the building blocks involved in somewhat and fully homomorphic encryption schemes in order to assess the practicality of such schemes. We concentrate on the selection of a suitable multiplication algorithm and hardware architecture for large integer multiplication, one of the main bottlenecks in many homomorphic encryption schemes. We focus on the encryption step of an integer-based fully homomorphic encryption (FHE) scheme. We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to ascertain whether the large integer multiplier within the encryption step of a FHE scheme could fit on a single FPGA device. We find that, for toy size parameters for the FHE encryption step, the large integer multiplier fits comfortably within the DSP48E1 slices, greatly improving the practicality of the encryption step compared to a software implementation. As multiplication is an important operation in other FHE schemes, a hardware implementation using this multiplier could also be used to improve performance of these schemes.
Resumo:
How can GPU acceleration be obtained as a service in a cluster? This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.
Resumo:
Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. This position paper considers the challenges and opportunities that arise out of this new direction in the computing landscape.
Resumo:
We report on the migration of a traditional, single architecture application to a grid application using heterogeneous resources. We focus on the use of the UK e-Science Level 2 grid (UKL2G) which provides a heterogeneous collection of resources distributed within the UK. We discuss the solution architecture, the performance of our application, its future development as a grid-based application and comment on the lessons we have learned in using a grid infrastructure for large-scale numerical problems.
Resumo:
While WiFi monitoring networks have been deployed in previous research, to date none have assessed live network data from an open access, public environment. In this paper we describe the construction of a replicable, independent WLAN monitoring system and address some of the challenges in analysing the resultant traffic. Analysis of traffic from the system demonstrates that basic traffic information from open-access networks varies over time (temporal inconsistency). The results also show that arbitrary selection of Request-Reply intervals can have a significant effect on Probe and Association frame exchange calculations, which can impact on the ability to detect flooding attacks.