46 resultados para climate science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial findings from high-latitude ice-cores implied a relatively unvarying Holocene climate, in contrast to the major climate swings in the preceding late-Pleistocene. However, several climate archives from low latitudes imply a less than equable Holocene climate, as do recent studies on peat bogs in mainland north-west Europe, which indicate an abrupt climate cooling 2800 years ago, with parallels claimed in a range of climate archives elsewhere. A hypothesis that this claimed climate shift was global, and caused by reduced solar activity, has recently been disputed. Until now, no directly comparable data were available from the southern hemisphere to help resolve the dispute. Building on investigations of the vegetation history of an extensive mire in the Valle de Andorra, Tierra del Fuego, we took a further peat core from the bog to generate a high-resolution climate history through the use of determination of peat hurnification and quantitative leaf-count plant macrofossil analysis. Here, we present the new proxy-climate data from the bog in South America. The data are directly comparable with those in Europe, as they were produced using identical laboratory methods. They show that there was a major climate perturbation at the same time as in northwest European bogs. Its timinia, nature and apparent global synchronicity lend support to the notion of solar forcing of past climate change, amplified by oceanic circulation. This finding of a similar response simultaneously in both hemispheres may help validate and improve global climate models. That reduced solar activity might cause a global climatic change suggests that attention be paid also to consideration of any global climate response to increases in solar activity. This has implications for interpreting the relative contribution of climate drivers of recent 'global warming'. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microlaminated sediment cores from the Kalya slope region of Lake Tanganyika provide a near-annually resolved paleoclimate record between similar to 2,840 and 1,420 cal. yr B.P. demonstrating strong linkages between climate variability and lacustrine productivity. Laminae couplets comprise dark, terrigenous-dominated half couplets, interpreted as low density underflows deposited from riverine sources during the rainy season, alternating with light, planktonic diatomaceous ooze, with little terrigenous component, interpreted as windy/dry season deposits. Laminated portions of the studied cores consist of conspicuous dark and light colored bundles of laminae couplets. Light and dark bundles alternate at decadal time scales. Within dark bundles, both light and dark half couplets are significantly thinner than within light bundles, implying slower sediment accumulation rates during both seasons over those intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate chronologies are essential for linking palaeoclimate archives. Carbon-14 wiggle-match dating was used to produce an accurate chronology for part of an early Holocene peat sequence from the Borchert (The Netherlands). Following the Younger Dryas-Preboreal transition, two climatic shifts could be inferred. Around 11 400 cal. yr BP the expansion of birch (Betula) forest was interrupted by a dry continental phase with dominantly open grassland vegetation, coeval with the PBO (Preboreal Oscillation), as observed in the GRIP ice core. At 11 250 cal. yr BP a sudden shift to a humid climate occurred. This second change appears to be contemporaneous with: (i) a sharp increase of atmospheric C-14; (ii) a temporary decline of atmospheric CO2; and (iii) an increase in the GRIP Be-10 flux. The close correspondence with excursions of cosmogenic nuclides points to a decline in solar activity, which may have forced the changes in climate and vegetation at around 11 250 cal. yr BP. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent climatic change has been recorded across the globe. Although environmental change is a characteristic feature of life on Earth and has played a major role in the evolution and global distribution of biodiversity, predicted future rates of climatic change, especially in temperature, are such that they will exceed any that has occurred over recent geological time. Climate change is considered as a key threat to biodiversity and to the structure and function of ecosystems that may already be subject to significant anthropogenic stress. The current understanding of climate change and its likely consequences for the fishes of Britain and Ireland and the surrounding seas are reviewed through a series of case studies detailing the likely response of several marine, diadromous and freshwater fishes to climate change. Changes in climate, and in particular, temperature have and will continue to affect fish at all levels of biological organization: cellular, individual, population, species, community and ecosystem, influencing physiological and ecological processes in a number of direct, indirect and complex ways. The response of fishes and of other aquatic taxa will vary according to their tolerances and life stage and are complex and difficult to predict. Fishes may respond directly to climate-change-related shifts in environmental processes or indirectly to other influences, such as community-level interactions with other taxa. However, the ability to adapt to the predicted changes in climate will vary between species and between habitats and there will be winners and losers. In marine habitats, recent changes in fish community structure will continue as fishes shift their distributions relative to their temperature preferences. This may lead to the loss of some economically important cold-adapted species such as Gadus morhua and Clupea harengus from some areas around Britain and Ireland, and the establishment of some new, warm-adapted species. Increased temperatures are likely to favour cool-adapted (e.g. Perca fluviatilis) and warm-adapted freshwater fishes (e.g. roach Rutilus rutilus and other cyprinids) whose distribution and reproductive success may currently be constrained by temperature rather than by cold-adapted species (e.g. salmonids). Species that occur in Britain and Ireland that are at the edge of their distribution will be most affected, both negatively and positively. Populations of conservation importance (e.g. Salvelinus alpinus and Coregonus spp.) may decline irreversibly. However, changes in food-web dynamics and physiological adaptation, for example because of climate change, may obscure or alter predicted responses. The residual inertia in climate systems is such that even a complete cessation in emissions would still leave fishes exposed to continued climate change for at least half a century. Hence, regardless of the success or failure of programmes aimed at curbing climate change, major changes in fish communities can be expected over the next 50 years with a concomitant need to adapt management strategies accordingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’.This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular,it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration,but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted multi-proxy geochemical analyses (including measurements of organic carbon, nitrogen and sulphur stable isotope composition, and carbonate carbon and oxygen isotope composition) on a 13.5 m sediment core from Lake Bliden, Denmark, which provide a record of shifting hydrological conditions for the past 6,700 years. The early part of the stratigraphic record (6,700-5,740 cal year BP) was wet, based on delta O-18(carb) and lithology, and corresponds to the Holocene Thermal Maximum. Shifts in primarily delta O-18(carb) indicate dry conditions prevailed from 5,740 to 2,800 cal year BP, although this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked to changing sea surface temperatures in the Greenland, Iceland and Norwegian seas. After 2,800 cal year BP, sedimentology, magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) indicate a major reduction on water level, which caused the depositional setting at the coring site to shift from the profundal to littoral zone. The Roman Warm Period (2,200-1,500 cal year BP) appears dry based on enriched delta O-18(carb) values. Possible effects of human disturbance in the watershed after 820 cal year BP complicate attempts to interpret the stratigraphic record although tentative interpretation of the delta O-18(carb), magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopes (delta O-18 and delta C-13) of lacustrine carbonates (Chara spp. algae and Pisidium spp. molluscs) from a lake sedimentary sequence in central Sweden were analysed to infer changes in lake hydrology and climate during the late Holocene. Results from analysis of lake water isotopes (delta O-18 and delta H-2) show that Lake Blektjarnen water isotope composition is responsive to the balance between evaporation and input water (E/l ratio). A high E/l ratio results from a dry and probably warmer climate, decreasing the relative importance of precipitation input. Under such conditions evaporation and atmospheric equilibration probably enrich lake water in O-18 and C-13, respectively, which is reflected in the isotopic composition of the carbonates in the lake. From the relatively positive Chara delta O-18 values we infer that conditions were dry and warm between 4400 and 4000 cal. a BP, whereas more negative values indicate that conditions were wetter and probably cooler between 4000 and 3000 cal. a BP. A drier climate is inferred from more positive values between 2500 and 1000 cal. a BP. However, a successive depletion after ca. 1750 cal. a BP, also detected in several other delta O-18 records (carbonate and diatom), suggest increasingly wetter conditions in Scandinavia after that time, which is probably related to increased strength of the zonal flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of solar variability on the climate of the Lateglacial and Holocene periods has been the subject of increasing discussion during the last decade. In the Mid-Holocene, several studies have identified cold/wet events that occur at ca 2800 cal. BP and a link with a reduction in solar activity, inferred from the C-14 record, has been postulated. We present results from a multi-proxy study of peat humification, plant macrofossils and testate amoebae from a raised bog at Glen West, northwest Ireland, that indicate that dry bog surface conditions were experienced in the north of Ireland at the time of the solar anomaly starting at 2800 cal. BP. With the aid of C-14 wiggle-matching and tephrochronology, an abrupt shift to wetter conditions is dated to ca 2700 cal. BP, coinciding with a C-14 maximum but clearly post-dating the 2800 cal. BP event identified elsewhere in Europe. We explore the significance of this apparent lag in the Irish record, considering the possible role of the ocean in generating spatial and temporal complexities in the climate patterns of the North Atlantic region. We conclude that these complexities are likely to give rise to time-transgressive climate responses around the North Atlantic that will only be recognised by more critical chronological approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proxy records derived from ombrotrophic peatlands provide important insights into climate change over decadal to millennial timescales. We present mid- to late- Holocene humification data and testate amoebae-derived water table records from two peatlands in Northern Ireland. We examine the repli- cation of periodicities in these proxy climate records, which have been precisely linked through teph- rochronology. Age-depth models are constructed using a Bayesian piece-wise linear accumulation model and chronological errors are calculated for each profile. A Lomb-Scargle Fourier transform-based spectral analysis is used to test for statistically significant periodicities in the data. Periodicities of c. 130, 180, 260, 540 and 1160 years are present in at least one proxy record at each site. The replication of these peri- odicities provides persuasive evidence that they are a product of allogenic climate controls, rather than internal peatland dynamics. A technique to estimate the possible level of red-noise in the data is applied and demonstrates that the observed periodicities cannot be explained by a first-order autoregressive model. We review the periodicities in the light of those reported previously from other marine and terrestrial climate proxy archives to consider climate forcing parameters. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holocene climates and human impact in the Mediterranean basin have received much attention, but the Maltese Islands in the Central Mediterranean, although a pivotal area, have been little researched. Here, sedimentary and palynological data are presented for three cores from the Holocene coastal and shallowmarine
deposits of the Maltese Islands. These show deforestation from Pinus-Cupressaceae woodland in the early Neolithic, and then a long, but relatively stable history of agriculturally degraded environments to the present day. The major climate events which have affected the Italian and Balkan peninsulas to the
north, and Tunisia to the south, are not reflected in the pollen diagrams from the Maltese Islands because of the strong anthropogenic imprint on the Maltese vegetation from early in the Neolithic. Previous suggestions of environmentally-driven agricultural collapse at the end of the Neolithic appear, however,
to be substantiated and may be linked to regional aridification around 4300 cal. BP. Depopulation in early Medieval times is not supported by the current palynological evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined geomorphological–physical model approach is used to generate three-dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were
between 7 and 80 km in length, and were considerably less extensive than during pre-LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575± 22m and 1035±41m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.48°C reduction
in mean July temperature, and 200mm a¯¹ reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region’s aridity precluded the development of large continental ice sheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.