60 resultados para chromosomal diversification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Germline mutations in BRCA1 predispose carriers to a high
incidence of breast and ovarian cancers. The BRCA1 protein functions to maintain
genomic stability via important roles in DNA repair, transcriptional regulation, and
post-replicative repair. Despite functions in processes essential in all cells, BRCA1
loss or mutation leads to tumours predominantly in estrogen-regulated tissues.
Here, we aim to determine if endogenous estrogen metabolites may be an initiator
of genomic instability in BRCA1 deficient cells.

Methods: We analysed DNA DSBs by ?H2AX, 53BP1, and pATM1981
foci and neutral comet assay, estrogen metabolite concentrations by LC-MS/MS,
and BRCA1 transcriptional regulation of metabolism genes by ChIP-chip, ChIP,
and qRT-PCR.

Results: We show that estrogen metabolism is perturbed in BRCA1 deficient
cells resulting in elevated production of 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2), and decreased production of the protective metabolite
4-methoxyestradiol. We demonstrate that 2-OHE2 and 4-OHE2 treatment leads
to DNA double strand breaks (DSBs) in breast cells, and these DSBs were exacerbated
in both BRCA1 depleted cells and BRCA1 heterozygous cells (harbouring
185delAG mutation). Furthermore, the DSBs were not repaired efficiently in either
BRCA1 depleted or heterozygous cells, and we found that 2-OHE2 and 4-OHE2
treatment generates chromosomal aberrations in BRCA1 depleted cells. We suggest
that the increase in DNA DSBs in BRCA1 deficient cells is due to loss of
both BRCA1 transcriptional repression of estrogen metabolising genes (such as
CYP1A1 and CYP3A4) and loss of transcriptional activation of detoxification
genes (such as COMT).

Conclusions: We suggest that BRCA1 loss results in estrogen driven tumourigenesis
through a combination of increased expression of estrogen metabolising
enzymes and reduced expression of protective enzymes, coupled with a defect in
the repair of DNA DSBs induced by endogenous estrogen metabolites. The overall
effect being an exacerbation of genomic instability in estrogen regulated tissues in
BRCA1 mutation carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST) that correctly predicted the phylogroup (IA, IA, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated 'virulence' factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. © 2013 McDowell et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question: How parallel is adaptive evolution when it occurs from different genetic backgrounds? Background: Divergent evolutionary lineages of several post-glacial fish species including the threespine stickleback are found together in Ireland. Goals: To investigate the morphological diversity of stickleback populations in Ireland and assess whether morphology evolved in parallel between evolutionary lineages. Methods: We sampled stickleback from lake, river, and coastal habitats across Ireland. Microsatellite and mitochondrial DNA data revealed evolutionary history. Geometric morphometrics and linear trait measurements characterized morphology. We used a multivariate approach to quantify parallel and non-parallel divergence within and between lineages. Results: Repeated evolution of similar morphologies in similar habitats occurred across Ireland, concordant with patterns observed elsewhere in the stickleback distribution. A strong pattern of habitat-specific morphology existed even among divergent lineages. Furthermore, a strong signal of shared morphological divergence occurred along a marine-freshwater axis. Evidently, deterministic natural selection played a more important role in driving freshwater adaptation than independent evolutionary history. © 2013 Mark Ravinet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question: How parallel is adaptive evolution when it occurs from different genetic backgrounds?
Background: Divergent evolutionary lineages of several post-glacial fish species including the threespine stickleback are found together in Ireland.
Goals: To investigate the morphological diversity of stickleback populations in Ireland and assess whether morphology evolved in parallel between evolutionary lineages.
Methods: We sampled stickleback from lake, river, and coastal habitats across Ireland. Microsatellite and mitochondrial DNA data revealed evolutionary history. Geometric morphometrics and linear trait measurements characterized morphology. We used a multivariate approach to quantify parallel and non-parallel divergence within and between lineages.
Results: Repeated evolution of similar morphologies in similar habitats occurred across Ireland, concordant with patterns observed elsewhere in the stickleback distribution. A strong pattern of habitat-specific morphology existed even among divergent lineages. Furthermore, a strong signal of shared morphological divergence occurred along a marine–freshwater axis. Evidently, deterministic natural selection played a more important role in driving freshwater adaptation than independent evolutionary history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Within the framework of a health technology assessment and using an economic model, to determine the most clinically and cost effective policy of scanning and screening for fetal abnormalities in early pregnancy. Design A discrete event simulation model of 50,000 singleton pregnancies. Setting Maternity services in Scotland. Population Women during the first 24 weeks of their pregnancy. Methods The mathematical model was populated with data on uptake of screening, prevalence, detection and false positive rates for eight fetal abnormalities and with costs for ultrasound scanning and serum screening. Inclusion of abnormalities was based on the relative prevalence and clinical importance of conditions and the availability of data. Six strategies for the identification of abnormalities prenatally including combinations of first and second trimester ultrasound scanning and first and second trimester screening for chromosomal abnormalities were compared. Main outcome measures The number of abnormalities detected and missed, the number of iatrogenic losses resulting from invasive tests, the total cost of strategies and the cost per abnormality detected were compared between strategies. Results First trimester screening for chromosomal abnormalities costs more than second trimester screening but results in fewer iatrogenic losses. Strategies which include a second trimester ultrasound scan result in more abnormalities being detected and have lower costs per anomaly detected. Conclusions The preferred strategy includes both first and second trimester ultrasound scans and a first trimester screening test for chromosomal abnormalities. It has been recommended that this policy is offered to all women in Scotland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The co-occurrence of two rare recessive genetic conditions in apparently unrelated individuals or families is extremely rare. Two geographically distant and apparently unrelated families were identified in which individuals were simultaneously affected by two rare recessive mendelian syndromes, Papillon-Lefevre syndrome and type 1 oculocutaneous albinism. The families were tested for mutations in the causative genes, cathepsin C (CTSC) and tyrosinase (TYR), respectively, by direct sequencing. To assess the relationship of the two families, both families were tested for polymorphisms at eight microsatellite markers spanning both CTSC and TYR loci. Independent mutations (c.318-1G-->A and c.817G-->C/p.W272C) were identified in CTSC and TYR, respectively, that were shared by the affected individuals in both families. The two affected genes lie close together on chromosome bands 11q14.2-14.3, and studies with linked genetic markers suggested that the families shared a small chromosomal segment carrying both mutations that had been transmitted intact from a remote common ancestor. The co-occurrence of the two rare diseases in multiple families depends on their shared chromosomal location, but not on any shared pathogenic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of approximately 84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of linkage analyses and association studies are currently employed to promote the identification of genetic factors contributing to inherited renal disease. We have standardized and merged complex genetic data from disparate sources, creating unique chromosomal maps to enhance genetic epidemiological investigations. This database and novel renal maps effectively summarize genomic regions of suggested linkage, association, or chromosomal abnormalities implicated in renal disease. Chromosomal regions associated with potential intermediate clinical phenotypes have been integrated, adding support for particular genomic intervals. More than 500 reports from medical databases, published scientific literature, and the World Wide Web were interrogated for relevant renal-related information. Chromosomal regions highlighted for prioritized investigation of renal complications include 3q13-26, 6q22-27, 10p11-15, 16p11-13, and 18q22. Combined genetic and physical maps are effective tools to organize genetic data for complex diseases. These renal chromosome maps provide insights into renal phenotype-genotype relationships and act as a template for future genetic investigations into complex renal diseases. New data from individual researchers and/or future publications can be readily incorporated to this resource via a user-friendly web-form accessed from the website: www.qub.ac.uk/neph-res/CORGI/index.php.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.