20 resultados para casein kinase II


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-113), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappa B activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and down-stream inflammatory pathways. AGE-R3 may protect against these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: GSK461364 is an ATP-competitive inhibitor of polo-like kinase 1 (Plk1). A phase I study of two schedules of intravenous GSK461364 was conducted. Experimental Design: GSK461364 was administered in escalating doses to patients with solid malignancies by two schedules, either on days 1, 8, and 15 of 28-day cycles (schedule A) or on days 1, 2, 8, 9, 15, and 16 of 28-day cycles (schedule B). Assessments included pharmacokinetic and pharmacodynamic profiles, as well as marker expression studies in pretreatment tumor biopsies. Results: Forty patients received GSK461364: 23 patients in schedule A and 17 in schedule B. Dose-limiting toxicities (DLT) in schedule A at 300 mg (2 of 7 patients) and 225 mg (1 of 8 patients) cohorts included grade 4 neutropenia and/or grade 3–4 thrombocytopenia. In schedule B, DLTs of grade 4 pulmonary emboli and grade 4 neutropenia occurred at 7 or more days at 100 mg dose level. Venous thrombotic emboli (VTE) and myelosuppression were the most common grade 3–4, drug-related events. Pharmacokinetic data indicated that AUC (area under the curve) and C max (maximum concentration) were proportional across doses, with a half-life of 9 to 13 hours. Pharmacodynamic studies in circulating tumor cells revealed an increase in phosphorylated histone H3 (pHH3) following drug administration. A best response of prolonged stable disease of more than 16 weeks occurred in 6 (15%) patients, including 4 esophageal cancer patients. Those with prolonged stable disease had greater expression of Ki-67, pHH3, and Plk1 in archived tumor biopsies. Conclusions: The final recommended phase II dose for GSK461364 was 225 mg administered intravenously in schedule A. Because of the high incidence (20%) of VTE, for further clinical evaluation, GSK461364 should involve coadministration of prophylactic anticoagulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).

Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).

Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.

Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of histone deacetylases may be an important target in patients with myeloproliferative neoplasms. This investigator-initiated, non-randomized, open-label phase II multi-centre study included 63 patients (19 essential thrombocythaemia, 44 polycythaemia vera) from 15 centres. The primary objective was to evaluate if vorinostat was followed by a decline in clonal myeloproliferation as defined by European Leukaemia Net. Thirty patients (48%) completed the intervention period (24 weeks of therapy). An intention-to-treat response rate of 35% was identified. Pruritus was resolved [19% to 0% (P = 0·06)] and the prevalence of splenomegaly was lowered from 50% to 27% (P = 0·03). Sixty-five per cent of the patients experienced a decrease in JAK2 V617F allele burden (P = 0·006). Thirty-three patients (52% of patients) discontinued study drug before end of intervention due to adverse events (28 patients) or lack of response (5 patients). In conclusion, vorinostat showed effectiveness by normalizing elevated leucocyte and platelet counts, resolving pruritus and significantly reducing splenomegaly. However, vorinostat was associated with significant side effects resulting in a high discontinuation rate. A lower dose of vorinostat in combination with conventional and/or novel targeted therapies may be warranted in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Anemia is considered a negative prognostic risk factor for survival in patients with myelofibrosis. Most patients with myelofibrosis are anemic, and 35-54 % present with anemia at diagnosis. Ruxolitinib, a potent inhibitor of Janus kinase (JAK) 1 and JAK2, was associated with an overall survival benefit and improvements in splenomegaly and patient-reported outcomes in patients with myelofibrosis in the two phase 3 COMFORT studies. Consistent with the ruxolitinib mechanism of action, anemia was a frequently reported adverse event. In clinical practice, anemia is sometimes managed with erythropoiesis-stimulating agents (ESAs). This post hoc analysis evaluated the safety and efficacy of concomitant ruxolitinib and ESA administration in patients enrolled in COMFORT-II, an open-label, phase 3 study comparing the efficacy and safety of ruxolitinib with best available therapy for treatment of myelofibrosis. Patients were randomized (2:1) to receive ruxolitinib 15 or 20 mg twice daily or best available therapy. Spleen volume was assessed by magnetic resonance imaging or computed tomography scan.

RESULTS: Thirteen of 146 ruxolitinib-treated patients had concomitant ESA administration (+ESA). The median exposure to ruxolitinib was 114 weeks in the +ESA group and 111 weeks in the overall ruxolitinib arm; the median ruxolitinib dose intensity was 33 mg/day for each group. Six weeks before the first ESA administration, 10 of the 13 patients had grade 3/4 hemoglobin abnormalities. These had improved to grade 2 in 7 of the 13 patients by 6 weeks after the first ESA administration. The rate of packed red blood cell transfusions per month within 12 weeks before and after first ESA administration remained the same in 1 patient, decreased in 2 patients, and increased in 3 patients; 7 patients remained transfusion independent. Reductions in splenomegaly were observed in 69 % of evaluable patients (9/13) following first ESA administration.

CONCLUSIONS: Concomitant use of an ESA with ruxolitinib was well tolerated and did not affect the efficacy of ruxolitinib. Further investigations evaluating the effects of ESAs to alleviate anemia in ruxolitinib-treated patients are warranted (ClinicalTrials.gov identifier, NCT00934544; July 6, 2009).