30 resultados para bubble-column
Resumo:
This paper presents the findings of a project part sponsored by an ICE Research and Development grant on portal frames in fire. The research reported here has also lead to a sucessful research grant from the IStructE. The paper describes a non-linear elasto plastic dynamic finite element model that captures the collapse of a portal frame in fire. It demonstrates that current guidance on the column base stiffness and strength, to prevent collapse, may in some cases be unconservative.
Resumo:
UVES interstellar observations from the Paranal Observatory Project are presented for early-type stars located in the line of sight to the nearby open clusters IC 2391 (Omni Vel) and NGC 6475 (M7), with spectroscopic resolution R similar to 80 000 and signal-to-noise ratios in the Ti II (3383 angstrom), Ca II K, CH+ (4232 angstrom), Na I D and K I (7698 angstrom) lines of several hundred. The sightlines are a mixture of cluster and non-cluster objects. A total of 22 early-type stars (A and B type) are present in our sample towards IC 2391, with 21 towards NGC 6475/M7, and enable us to probe for differences in column density on scales from similar to 0.07 to 7.3 and similar to 0.05 to 4.9 pc in the respective clusters. Additionally, towards Praesepe the Na I D interstellar variation only is probed towards 13 sightlines and transverse scales of similar to 0.16-10.7 pc at R = 70 000. Towards IC 2391 variations are found in Ti II, Ca II K and Na I D column density in different sightlines of up to 0.7, 1.0 and 1.8 dex (excluding one star), respectively. This kind of variability correlates well with the Hipparcos parallax of the objects, and probes structure within the Local Bubble. For cluster-only objects the variations are 0.3, 0.3 and 0.5 dex, respectively. For the field of view towards NGC6475 the corresponding maximum variations are somewhat smaller, being 0.5, 0.3, 0.8 and 1.0 dex for Ti II, Ca II K, Na I and K I, respectively, for all objects and 0.4, 0.2, 0.6 and 0.7 dex for the cluster-only objects. These are uncorrelated with parallax, and again demonstrate that Ca II K tends to be more smoothly distributed than Na I D. A few likely cluster sightlines show evidence for CH+ and variations in this molecular species of a factor of 10 in equivalent width over sub-pc scales. Towards Praesepe variation in interstellar Na I D is small, being a maximum of only similar to 0.4 dex (including measurement errors), but with fewer sightlines studied. Overall, the scatter in the data is similar for the singly ionized species Ti II and Ca II, lending more support to the hypothesis that these two species sample similar parts of the interstellar medium (ISM). This also appears to be the case for the neutral species Na I D and K I in the one cluster studied. Finally, multiple-epoch observations from a variety of archive sources are used to search for astronomical unit (au) scale structure in the ISM towards 46 sightlines. There are tentative indications of structure on scales of tens to thousands of au for three sightlines. Future observations will confirm the veracity or otherwise of the time-variable components and others presented.
Resumo:
We examine the role of the news media during the British Railway Mania, arguably one of the largest financial bubbles in history. Our analysis suggests that the press responded to changes in the stock market, and its reporting of recent events may have influenced asset prices. However, we find no evidence that the sentiment of the media, or the attention which it gave to particular stocks, had any influence on exacerbating or ending the Mania. The main contribution of the media was to provide factual information which investors could use to inform their decisions. © 2012 Elsevier Inc.
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).
Resumo:
A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Resumo:
Sonoluminescence (SL) involves the conversion of mechanical [ultra]sound energy into light. Whilst the phenomenon is invariably inefficient, typically converting just 10-4 of the incident acoustic energy into photons, it is nonetheless extraordinary, as the resultant energy density of the emergent photons exceeds that of the ultrasonic driving field by a factor of some 10 12. Sonoluminescence has specific [as yet untapped] advantages in that it can be effected at remote locations in an essentially wireless format. The only [usual] requirement is energy transduction via the violent oscillation of microscopic bubbles within the propagating medium. The dependence of sonoluminescent output on the generating sound field's parameters, such as pulse duration, duty cycle, and position within the field, have been observed and measured previously, and several relevant aspects are discussed presently. We also extrapolate the logic from a recently published analysis relating to the ensuing dynamics of bubble 'clouds' that have been stimulated by ultrasound. Here, the intention was to develop a relevant [yet computationally simplistic] model that captured the essential physical qualities expected from real sonoluminescent microbubble clouds. We focused on the inferred temporal characteristics of SL light output from a population of such bubbles, subjected to intermediate [0.5-2MPa] ultrasonic pressures. Finally, whilst direct applications for sonoluminescent light output are thought unlikely in the main, we proceed to frame the state-of-the- art against several presently existing technologies that could form adjunct approaches with distinct potential for enhancing present sonoluminescent light output that may prove useful in real world [biomedical] applications.
Resumo:
Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confine concrete sections to improve their shear strength, flexural ductility and ultimate strain. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit beam-column joints in non-seismically designed reinforced concrete buildings. SMAs are complex materials and their material behaviour depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first.
Resumo:
Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confining concrete sections to improve their shear strength, flexural ductility and ultimate strain capacity. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit a beam-column joint in non-seismically designed reinforced concrete buildings.
The complex material behaviour of SMAs depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first in this paper.
Resumo:
Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost $6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately $350. Moreover, because of its simple design--consumer-grade pumps, medical tubing, and regulators--it requires only the simple replacement of a <$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device.