94 resultados para brown algae
Resumo:
Molecular marker studies reported here, involving allozymes, mitochondrial DNA and microsatellites, demonstrate that ferox brown trout Salmo trutta in Lochs Awe and Laggan, Scotland, are reproductively isolated and genetically distinct from co-occurring brown trout. Ferox were shown to spawn primarily, and possibly solely, in a single large river in each lake system making them particularly vulnerable to environmental changes. Although a low level of introgression seems to have occurred with sympatric brown trout, possibly as a result of human-induced habitat alterations and stocking, ferox trout in these two lakes meet the requirements for classification as a distinct biological, phylogenetic and morphological species. It is proposed that the scientific name Salmo ferox Jardine, 1835, as already applied to Lough Melvin (Ireland) ferox, should be extended to Awe and Laggan ferox.
Resumo:
Normally, populations of brown trout are genetically highly variable. Two adjacent populations from NW Scotland, which had previously been found to be monomorphic for 46 protein-coding loci, were studied by higher resolution techniques. Analyses of mitochondrial DNA, multilocus DNA fingerprints and eight specific minisatellite loci revealed no genetic variation among individuals or genetic differences between the two populations. Continual low effective population sizes or severe repeated bottlenecks, as a result of low or variable recruitment, probably explain the atypical absence of genetic variation in these trout populations. Growth data do not provide any evidence of a reduction in fitness in trout from these populations.
Resumo:
Brown's model for the relaxation of the magnetization of a single domain ferromagnetic particle is considered. This model results in the Fokker-Planck equation of the process. The solution of this equation in the cases of most interest is non- trivial. The probability density of orientations of the magnetization in the Fokker-Planck equation can be expanded in terms of an infinite set of eigenfunctions and their corresponding eigenvalues where these obey a Sturm-Liouville type equation. A variational principle is applied to the solution of this equation in the case of an axially symmetric potential. The first (non-zero) eigenvalue, corresponding to the largest time constant, is considered. From this we obtain two new results. Firstly, an approximate minimising trial function is obtained which allows calculation of a rigorous upper bound. Secondly, a new upper bound formula is derived based on the Euler-Lagrange condition. This leads to very accurate calculation of the eigenvalue but also, interestingly, from this, use of the simplest trial function yields an equivalent result to the correlation time of Coffey et at. and the integral relaxation time of Garanin. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although the ancient practice of traditional Chinese medicine (TCM) utilizes predominantly herbal ingredients, many of which are now the subject of intense scientific scrutiny, significant quantities of animal tissue-derived materials are also employed. Here we have used contemporary molecular techniques to study the material known as lin wa pi, the dried skin of the Heilongjiang brown frog, Rana amurensis, that is used commonly as an ingredient of many medicines, as a general tonic and as a topical antimicrobial/wound dressing. Using a simple technology that has been developed and validated over several years, we have demonstrated that components of both the skin granular gland peptidome and transcriptome persist in this material. Interrogation of the cDNA library constructed from the dried skin by entrapment and amplification of polyadenylated mRNA, using a "shotgun" primer approach and 3'-RACE, resulted in the cloning of cDNAs encoding the precursors of five putative antimicrobial peptides. Two (ranatuerin-2AMa and ranatuerin-2AMb) were obvious homologs of a previously described frog skin peptide family, whereas the remaining three were of sufficient structural novelty to be named amurins 1-3. Mature peptides were each identified in reverse phase HPLC fractions of boiling water extracts of skin and their structures confirmed by MS/MS fragmentation sequencing. Components of traditional Chinese medicines of animal tissue origin may thus contain biologically active peptides that survive the preparation procedures and that may contribute to therapeutic efficacy.
Resumo:
There is a great need to design functional bioactive substitute materials capable of surviving harsh and diverse conditions within the human body. Calcium-phosphate ceramics, in particular hydroxyapatite are well established substitute materials for orthopaedic and dental applications. The aim of this study was to develop a bioceramic from alga origins suitable for bone tissue application. This was achieved by a novel synthesis technique using ambient pressure at a low temperature of 100 degrees C in a highly alkaline environment. The algae was characterised using SEM, BET, XRD and Raman Spectroscopy to determine its physiochemical properties at each stage. The results confirmed the successful conversion of mineralised red alga to hydroxyapatite, by way of this low-pressure hydrothermal process. Furthermore, the synthesised hydroxyapatite maintained the unique micro-porous structure of the original algae, which is considered beneficial in bone repair applications. (C) 2007 Elsevier B.V. All rights reserved.