46 resultados para biomedical equipment
Resumo:
It is likely that humans have sought enhancements for themselves or their children for as long as they have recognised that improvements in individuals are a possibility. One genre of self-improvement in modern society can be called 'biomedical enhancements'. These include drugs, surgery and other medical interventions aimed at improving the mind, body or performance. This paper uses the case of human growth hormone (hGH) to examine the social nature of enhancements. Synthetic hGH was developed in 1985 by the pharmaceutical industry and was approved by the FDA for very specific uses, particularly treatment of growth hormone deficiency. However, it has also been promoted for a number of 'off label' uses, most of which can be deemed enhancements. Drugs approved for one treatment pave the way for use as enhancements for other problems. Claims have been made for hGH as a treatment for idiopathic shortness, as an anti-ageing agent and to improve athletic performance. Using the hGH case, we are able to distinguish three faces of biomedical enhancement: normalisation, repair and performance edge. Given deeply ingrained social and individual goals in American society, the temptations of biomedical enhancements provide inducement for individuals and groups to modify their situation. We examine the temptations of enhancement in terms of issues such as unnaturalness, fairness, risk and permanence, and shifting social meanings. In our conclusions, we outline the potentials and pitfalls of biomedical enhancement.
Resumo:
A Design of Experiments (DoE) analysis was undertaken to generate a list of configurations for CFD numerical simulation of an aircraft crown compartment. Fitted regression models were built to predict the convective heat transfer coefficients of thermally sensitive dissipating elements located inside this compartment. These are namely the SEPDC and the Route G. Currently they are positioned close to the fuselage and it is of interest to optimise the heat transfer for reliability and performance purposes. Their locations and the external fuselage surface temperature were selected as input variables for the DoE. The models fit the CFD data with values ranging from 0.878 to 0.978, and predict that the optimum locations in terms of heat transfer are when the elements are positioned as close to the crown floor as possible ( and ?min. limits), where they come in direct contact with the air flow from the cabin ventilation system, and when they are positioned close to the centreline ( and ?CL). The methodology employed allows aircraft thermal designers to optimise equipment placement in confined areas of an aircraft during the design phase. The determined models should be incorporated into global aircraft numerical models to improve accuracy and reduce model size and computational time. © 2012 Elsevier Masson SAS. All rights reserved.