39 resultados para bake hardening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from a series of controlled suction triaxial tests on samples of compacted speswhite kaolin were used in the development of an elasto–plastic critical state framework for unsaturated soil. The framework is defined in terms of four state variables: mean net stress, deviator stress, suction and specific volume. Included within the proposed framework are an isotropic normal compression hyperline, a critical state hyperline and a state boundary hypersurface. For states that lie inside the state boundary hypersurface the soil behaviour is assumed to be elastic, with movement over the state boundary hypersurface corresponding to expansion of a yield surface in stress space. The pattern of swelling and collapse observed during wetting, the elastic–plastic compression behaviour during isotropic loading and the increase of shear strength with suction were all related to the shape of the yield surface and the hardening law defined by the form of the state boundary. By assuming that constant–suction cross–sections of the yield surface were elliptical it was possible to predict test paths for different types of triaxial shear test that showed good agreement with observed behaviour. The development of shear strain was also predicted with reasonable success, by assuming an associated flow rule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour was investigated by conducting controlled-suction triaxial tests on samples of unsaturated compacted speswhite kaolin. Compaction pressure influences initial state, by determining the initial position of the yield surface, thus affecting, among other things, the shape of stress–strain curves during shearing. Compaction pressure also influences, to a limited degree, the positions of the normal compression lines for different values of suction, but it has no effect on critical state relationships. The effect of compaction pressure can probably be modelled solely in terms of initial state if an anisotropic elastoplastic model incorporating rotational hardening is employed, whereas the parameters defining the slopes and intercepts of the normal compression lines for different values of suction require adjustment with variation of compaction pressure if a conventional isotropic hardening elastoplastic model is employed. Compaction water content influences the initial suction, but also has a substantial influence on normal compression lines and a noticeable effect on the volumetric behaviour at critical states. It is likely that soil samples compacted at different water contents will have to be modelled as different materials, irrespective of whether an isotropic or anisotropic hardening elastoplastic model is employed. A change from static to dynamic compaction has no significant effect on subsequent behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95 °C and 102 °C) and strain rate (1 s-1 and 2 s-1) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET–clay but it has a major effect on deformation behaviour which will necessitate the use of much higher forming forces during processing. The strain hardening behaviour of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O2 barrier properties. Increasing strain rate has a lesser effect on the strain hardening behaviour of the PET–clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET–clay sample at the higher strain rate. The Halpin–Tsai model is shown to accurately predict the modulus enhancement of the PET–clay materials when a modified particle modulus rather than nominal clay modulus is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas fluidised beds have many applications in a wide range of industrial sectors and it is important to be able to predict their performance. This requires, for example, a deeper appreciation of the flow of the particles in such systems using both empirical and numerical methods. The coefficient of restitution is an important collisional parameter that is used in some granular flow models in order to predict the velocities and positions of the particles in fluidised beds. The current paper reports experimental data involving the coefficients of restitution of three different representative types of granule viz. melt, wet and binderless granules. They were measured at various impact velocities and the values were compared with those calculated from different theoretical models based on quasi-static contact mechanics. This required knowledge of the Young's moduli and yield stresses, which were measured quasi-statically using diametric compression. The results show that the current theoretical models for the coefficient of restitution explored here lead to either an over- or an under-estimation of the measured values. The melt granules exhibited the greatest values of the coefficient of restitution, Young's modulus and yield stress. The differences in these values were consistent with the nature of the interparticle bonding for each of the three granule types. A new model for the calculation of the coefficient of restitution of granular material was developed that takes account of the work hardening of the granules during impact. Generally, this model provides an improved prediction of the measured values. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For elastoplastic particle reinforced metal matrix composites, failure may originate from interface debonding between the particles and the matrix, both elastoplastic and matrix fracture near the interface. To calculate the stress and strain distribution in these regions, a single reinforcing particle axisymmetric unit cell model is used in this article. The nodes at the interface of the particle and the matrix are tied. The development of interfacial decohesion is not modelled. Finite element modelling is used, to reveal the effects of particle strain hardening rate, yield stress and elastic modulus on the interfacial traction vector (or stress vector), interface deformation and the stress distribution within the unit cell, when the composite is under uniaxial tension. The results show that the stress distribution and the interface deformation are sensitive to the strain hardening rate and the yield stress of the particle. With increasing particle strain hardening rate and yield stress, the interfacial traction vector and internal stress distribution vary in larger ranges, the maximum interfacial traction vector and the maximum internal stress both increase, while the interface deformation decreases. In contrast, the particle elastic modulus has little effect on the interfacial traction vector, internal stress and interface deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details the monitoring and repair of an impact damaged prestressed concrete bridge. The repair was required following an impact from a low-loader carrying an excavator while passing underneath the bridge. The repair was carried out by preloading the bridge in the vicinity of the damage to relieve some prestressing. This preload was removed following the hardening and considerable strength gain of the repair material. The true behaviour of damaged prestressed concrete bridges during repair is difficult to estimate theoretically due to lack of benchmarking and inadequacy of assumed damage models. A network of strain gauges at locations of interest was thus installed during the entire period of repair. Effects of various activities were qualitatively and quantitatively observed. The interaction and rapid, model-free calibration of damaged and undamaged beams, including identification of damaged gauges were also probed. This full scale experiment is expected to be of interest and benefit to the practising engineer and the researcher alike.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to determine the material properties from the experimental data. To represent the non–linear effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately obtained trough a comparison with the experimental uniaxial and biaxial tests. The in?uence of the temperature on the viscous part is also modelled and an evaluation of the adiabatic self heating of the specimen is compared to experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the achievable performance of adaptive beamforming (A-BF) and adaptive orthogonal space time block coding (A-OSTBC) with outdated channel feedback. We extend our single user setup to multiuser diversity systems employing adaptive modulation, and illustrate the impact of feedback delay on the multiuser diversity gain with either A-OSTBC or A-BF. Using closed-form expressions for spectral efficiency and average BER of a multiuser diversity system derived in this paper, we prove that the A-BF scheme outperforms the A-OSTBC scheme with no feedback delay. However, when the feedback delay is large, the A-OSTBC scheme achieves better performance due to the reduced diversity advantage of A-BF. We observe that more transmit antennas bring higher spectral efficiency for BF. With small feedback delay, this becomes inverted using OSTBC, due to the effect of channel-hardening. Interestingly, however, we show that A-OSTBC with multiple users enjoys improved spectral efficiency when the number of transmit antennas is increased and the feedback delay is significant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study monitors both the short- and long-term hydration characteristics of concrete using discretized conductivity measurements from initial gauging, through setting and hardening, the latter comprising both the curing and post-curing periods. In particular, attention is directed to the near-surface concrete as it is this zone which protects the steel from the external environment and has a major influence on durability, performance and service-life. A wide range of concrete mixes is studied comprising both plain Portland cement concretes and concretes containing fly-ash and ground granulated blast furnace slag. The parameter normalised conductivity was used to identify four distinct stages in the hydration process and highlight the influence of supplementary cementitious materials (SCM) on hydration and hydration kinetics. A relationship has been presented to account for the temporal decrease in conductivity, post 10-days hydration. The testing procedure and methodology presented lend itself to in-situ monitoring of reinforced concrete structures. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the process of room-temperature low cycle fatigue, the China Low Activation Martensitic steel exhibits at the beginning cyclic hardening and then continuous cyclic softening. The grain size decreased and the martensitic lath transformed to cells/subgrains after the tests. The subgrains increase in size with increasing strain amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details the theory and implementation of a composite damage model, addressing damage within a ply (intralaminar) and delamination (interlaminar), for the simulation of crushing of laminated composite structures. It includes a more accurate determination of the characteristic length to achieve mesh objectivity in capturing intralaminar damage consisting of matrix cracking and fibre failure, a load-history dependent material response, an isotropic hardening nonlinear matrix response, as well as a more physically-based interactive matrix-dominated damage mechanism. The developed damage model requires a set of material parameters obtained from a combination of standard and non-standard material characterisation tests. The fidelity of the model mitigates the need to manipulate, or "calibrate", the input data to achieve good agreement with experimental results. The intralaminar damage model was implemented as a VUMAT subroutine, and used in conjunction with an existing interlaminar damage model, in Abaqus/Explicit. This approach was validated through the simulation of the crushing of a cross-ply composite tube with a tulip-shaped trigger, loaded in uniaxial compression. Despite the complexity of the chosen geometry, excellent correlation was achieved with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.