25 resultados para author privacy
Resumo:
The notion of privacy represents a central criterion for both indoor and outdoor social spaces in most traditional Arab settlements. This paper investigates privacy and everyday life as determinants of the physical properties of the built and urban fabric and will study their impact on traditional settlements and architecture of the home in the contemporary Iraqi city. It illustrates the relationship between socio-cultural aspects of public/private realms using the notion of the social sphere as an investigative tool of the concept of social space in Iraqi houses and local communities (Mahalla). This paper reports that in spite of the impact of other factors in articulating built forms, privacy embodies the primary role under the effects of Islamic rules, principles and culture. The crucial problem is the underestimation of traditional inherited values through opening social spaces to the outside that giving unlimited accesses to the indoor social environment creating many problems with regard to privacy and communal social integration.
Resumo:
Biometric systems provide a valuable service in helping to identify individuals from their stored personal details. Unfortunately, with the rapidly increasing use of such systems, there is a growing concern about the possible misuse of that information. To counteract the threat, the European Union (EU) has introduced comprehensive legislation that seeks to regulate data collection and help strengthen an individual’s right to privacy. This article looks at the implications of the legislation for biometric system deployment. After an initial consideration of current privacy concerns, it examines what is meant by ‘personal data’ and its protection, in legislation terms. Also covered are issues around the storage of biometric data, including its accuracy, its security, and justification for what is collected. Finally, the privacy issues are illustrated through three biometric use cases: border security, online bank access control and customer profiling in stores.
Resumo:
While video surveillance systems have become ubiquitous in our daily lives, they have introduced concerns over privacy invasion. Recent research to address these privacy issues includes a focus on privacy region protection, whereby existing video scrambling techniques are applied to specific regions of interest (ROI) in a video while the background is left unchanged. Most previous work in this area has only focussed on encrypting the sign bits of nonzero coefficients in the privacy region, which produces a relatively weak scrambling effect. In this paper, to enhance the scrambling effect for privacy protection, it is proposed to encrypt the intra prediction modes (IPM) in addition to the sign bits of nonzero coefficients (SNC) within the privacy region. A major issue with utilising encryption of IPM is that drift error is introduced outside the region of interest. Therefore, a re-encoding method, which is integrated with the encryption of IPM, is also proposed to remove drift error. Compared with a previous technique that uses encryption of IPM, the proposed re-encoding method offers savings in the bitrate overhead while completely removing the drift error. Experimental results and analysis based on H.264/AVC were carried out to verify the effectiveness of the proposed methods. In addition, a spiral binary mask mechanism is proposed that can reduce the bitrate overhead incurred by flagging the position of the privacy region. A definition of the syntax structure for the spiral binary mask is given. As a result of the proposed techniques, the privacy regions in a video sequence can be effectively protected by the enhanced scrambling effect with no drift error and a lower bitrate overhead.
Resumo:
Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.
Resumo:
In Boolean games, agents try to reach a goal formulated as a Boolean formula. These games are attractive because of their compact representations. However, few methods are available to compute the solutions and they are either limited or do not take privacy or communication concerns into account. In this paper we propose the use of an algorithm related to reinforcement learning to address this problem. Our method is decentralized in the sense that agents try to achieve their goals without knowledge of the other agents’ goals. We prove that this is a sound method to compute a Pareto optimal pure Nash equilibrium for an interesting class of Boolean games. Experimental results are used to investigate the performance of the algorithm.
Resumo:
The privacy of voice over IP (VoIP) systems is achieved by compressing and encrypting the sampled data. This paper investigates in detail the leakage of information from Skype, a widely used VoIP application. In this research, it has been demonstrated by using the dynamic time warping (DTW) algorithm, that sentences can be identified with an accuracy of 60%. The results can be further improved by choosing specific training data. An approach involving the Kalman filter is proposed to extract the kernel of all training signals.