156 resultados para alzheimer disease
Resumo:
The origins of behavioural and psychological symptoms of dementia are still poorly understood. By focusing on piecemeal behaviours as opposed to more robust syndrome change valid biological correlates may be overlooked. Our understanding of BPSD via the identification of neuropsychiatric syndromes.
Resumo:
The rising number of people with cognitive impairment is placing health care budgets under significant strain. Dementia related behavioural change is a major independent risk factor for admission to expensive institutional care, and aggressive symptoms in particular are poorly tolerated by carers and frequently precipitate the collapse of home coping strategies. Aggressive change may result from known genetic risk factors for Alzheimer's disease (AD) and therefore accompany conventional markers such as apolipoprotein E (ApoE). We tested this hypothesis in 400 moderately to severely affected AD patients who were phenotyped for the presence of aggressive or agitated behaviour during the month prior to interview using the Neuropsychiatric Inventory with Caregiver Distress. The proportion of subjects with aggression/agitation in the month prior to interview was 51.8%. A significantly higher frequency of the e4 allele was found in individuals recording aggression/agitation in the month prior to interview (chi2 = 6.69, df = 2, p = 0.03). The additional risk for aggression/agitation conferred by e4 was also noted when e4 genotypes were compared against non-e4 genotypes (chi2 = 5.45, df = 1, p = 0.02, OR = 1.60, confidence interval (CI) 1.06 to 2.43). These results indicate that advanced Alzheimer's disease patients are at greater risk of aggressive symptoms because of a genetic weakness in apolipoprotein E.
Resumo:
It has been suggested that genetic influences unmasked during neurodevelopment to produce schizophrenia may appear throughout neurodegeneration to produce AD plus psychosis. Risk of schizophrenia and psychosis in Alzheimer's disease (AD) has been linked to polymorphic variation at the dopamine receptor DRD3 gene implying similar causative mechanisms. We tested this association in a large cohort of Alzheimer's disease patients with a diagnosis of probable AD of 3 years or more duration from the relatively genetically homogenous Northern Irish population. We assessed relationships between genotypes/alleles of the DRD3 BalI polymorphism and the presence or absence of psychotic symptoms (delusions, hallucinations) in AD patients during the month prior to interview and at any stage during the dementia. No significant associations were found when delusions and hallucinations were cross-tabulated against S and G alleles and SS, SG and GG genotypes. Logistic regression failed to detect any influence of APOE, gender, family history or prior psychiatric history. In conclusion, we were unable to confirm previously reported associations between the DRD3 BalI polymorphism and psychotic symptoms in AD.
Resumo:
There is substantial evidence for a susceptibility gene for late-onset Alzheimer's disease (AD) on chromosome 10. One of the characteristic features of AD is the degeneration and dysfunction of the cholinergic system. The genes encoding choline acetyltransferase (ChAT) and its vesicular transporter (VAChT), CHAT and SLC18A3 respectively, map to the linked region of chromosome 10 and are therefore both positional and obvious functional candidate genes for late-onset AD. We have screened both genes for sequence variants and investigated each for association with late-onset AD in up to 500 late-onset AD cases and 500 control DNAs collected in the UK. We detected a total of 17 sequence variants. Of these, 14 were in CHAT, comprising three non-synonymous variants (D7N in the S exon, A120T in exon 5 and L243F in exon 8), one synonymous change (H547H), nine single-nucleotide polymorphisms in intronic, untranslated or promoter regions, and a variable number of tandem repeats in intron 7. Three non-coding SNPs were detected in SLC18A3. None demonstrated any reproducible association with late-onset AD in our samples. Levels of linkage disequilibrium were generally low across the CHAT locus but two of the coding variants, D7N and A120T, proved to be in complete linkage disequilibrium.
Resumo:
The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.
Resumo:
To compare directly, in the same patient cohort, the ease of use and tolerability of donepezil and galantamine in the treatment of Alzheimer's disease (AD), and investigate the effects of both treatments on cognition and activities of daily living (ADL).
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Epidemiological and molecular genetic studies have shown the existence of several genes associated with increased risk of AD, the major genetic susceptibility locus coding for apolipoprotein E (apoE). A polymorphism in the myeloperoxidase gene (MPO) has previously been associated with AD susceptibility. However, results in the literature are controversial and seem to be dependent on several factors such as gender, apoE polymorphism or the genetic structure of the population. We investigated MPO G-463A and apoE polymorphism in 265 cases and 246 controls from the ApoEurope Study. In females, we found a significant association between MPO genotype and AD (P=0.034), GG genotype frequency being lower in cases (52.4%) as compared to controls (64.2%). In men, there was no significant effect of MPO polymorphism. No interaction was found between MPO polymorphism and apoE epsilon 4 allele. In conclusion, the G-463A polymorphism of MPO was statistically associated with AD in a gender-specific manner. However, given the low significance of P value we suggest no causal effect of the MPO gene in AD, as also evidenced in a recent meta-analysis. Our results support the hypothesis of a possible linkage disequilibrium between the MPO G-463A gene polymorphism and another functional variant involved in AD.
Resumo:
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3ßSer9, tauSer214, mTORSer2448, and decreased levels of the Akt target, p27kip1, were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.
Resumo:
In view of accumulating evidence of vascular pathology in Alzheimer's disease (AD), we tested the hypothesis that AD patients have impaired endothelial function. This was assessed using the technique of strain-gauge venous occlusion plethysmography, which measures forearm blood flow (FBF). Intra-arterial (brachial) infusion of acetylcholine (ACh) and sodium nitroprusside (SNP) was used to assess local endothelial dependent and independent responses, respectively. There was no difference in the basal FBF of patients and controls. ACh and SNP caused dose-related increases in FBF from baseline, but no difference was recorded between the AD and control group. This study provides no evidence of endothelial dysfunction in the systemic circulation of patients with AD.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.