270 resultados para alpha decay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alpha B -crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alpha B-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alpha B -crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alpha B -crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alpha B -crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A recombinant form of the alpha 2(IV)NC1 domain of type IV collagen has been shown to have potent anti-angiogenic activity although this peptide has not been studied in the context of proliferative retinopathies. In the current investigation we examined the potential for alpha 2(IV) NC1 to regulate retinal microvascular endothelial cell function using a range of in vitro and in vivo assay systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convergent biochemical and genetic evidence suggests that the formation of alpha-synuclein (alpha-syn) protein deposits is an important and, probably, seminal step in the development of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). It has been reported that transgenic animals overexpressing human alpha-syn develop lesions similar to those found in the brain in PD, together with a progressive loss of dopaminergic cells and associated abnormalities of motor function. Inhibiting and/or reversing alpha-syn self-aggregation could, therefore, provide a novel approach to treating the underlying cause of these diseases. We synthesized a library of overlapping 7-mer peptides spanning the entire alpha-syn sequence, and identified amino acid residues 64-100 of alpha-syn as the binding region responsible for its self-association. Modified short peptides containing alpha-syn amino acid sequences from part of this binding region (residues 69-72), named alpha-syn inhibitors (ASI), were found to interact with full-length alpha-syn and block its assembly into both early oligomers and mature amyloid-like fibrils. We also developed a cell-permeable inhibitor of alpha-syn aggregation (ASID), using the polyarginine peptide delivery system. This ASID peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-syn(A53T), a familial PD-associated mutation. ASI peptides without this delivery system did not reverse levels of Fe(II)-induced DNA damage. Furthermore, the ASID peptide increased (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical role for the conserved -integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin IIb3. To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with IIb3 by surface plasmon resonance. The affinity of this interaction was 82.2 ± 24.4 nM in a cell free assay. ICln co-immunoprecipitates with IIb3 in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 µM to 5 mM), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10–100 µM) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.