42 resultados para advanced manufacturing technologies


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geosmin is produced by cyanobacteria and actinomycetes in surface waters. It causes undesirable earthy off-flavours in freshwater fish and is a major concern for the drinking water industry. This paper presents the first published study on the use of the novel pelleted Ti02 photocatalyst, Hombikat K01/C, for the removal of geosmin from water. Ti02 in pelleted form eliminates the requirement for the separation of the catalyst from the water following treatment which is normally the case with the widely used powdered catalysts. A laboratory reactor was designed to limit system loss since the compound adsorbs to a wide range of surfaces. Initial concentration, aeration rate and irradiation were evaluated. It was found that degradation of geosmin followed the Langmuir-Hinshelwood model. Elevated aeration had no effect on the photocatalytic removal of geosmin, but increasing irradiation was found to increase degradation rates. The catalyst proved effective within 10 min under optimum conditions. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacterial (blue-green algal) toxins are extremely toxic naturally occurring substances which display hepato- and neurotoxic behaviour (1, 2). In this paper we report the application of titanium dioxide photocatalysis for the destruction of two of these compounds, microcystin-LR and anatoxin-a. The destruction of microcystin appears to follow Langmuir-Hinshelwood kinetics although a discrepancy was observed between adsorption constants determined for the photocatalytic process with those obtained from dark isotherms. A square root dependence between illumination intensity and rate of microcystin destruction was noted. When the destruction was performed in the presence of the naturally occurring pigment it appeared that the pigment also contributes to the destruction of the toxin. Toxicity studies on the photocatalysed toxin solutions indicates that the toxicity is substantially reduced within 30 min photolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle ), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an emerging hole-machining methodology, helical milling process has become increasingly popular in aeromaterials manufacturing research, especially in areas of aircraft structural parts, dies, and molds manufacturing. Helical milling process is highly demanding due to its complex tool geometry and the progressive material failure on the workpiece. This paper outlines the development of a 3D finite element model for helical milling hole of titanium alloy Ti-6Al-4V using commercial FE code ABAQUS/Explicit. The proposed model simulates the helical milling hole process by taking into account the damage initiation and evolution in the workpiece material. A contact model at the interface between end-mill bit and workpiece has been established and the process parameters specified. Furthermore, a simulation procedure is proposed to simulate different cutting processes with the same failure parameters. With this finite element model, a series of FEAs for machined titanium alloy have been carried out and results compared with laboratory experimental data. The effects of machining parameters on helical milling have been elucidated, and the capability and advantage of FE simulation on helical milling process have been well presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of two types of graphene nanoplatelets (GNPs) on the physico-mechanical properties of linear low-density polyethylene (LLDPE) was investigated. The addition of these two types of GNPs – designated as grades C and M – enhanced the thermal conductivity of the LLDPE, with a more pronounced improvement resulting from the M-GNPs compared to C-GNPs. Improvement in electrical conductivity and decomposition temperature was also noticed with the addition of GNPs. In contrast to the thermal conductivity, C-GNPs resulted in greater improvements in the electrical conductivity and thermal decomposition temperature. These differences can be attributed to differences in the surface area and dispersion of the two types of GNPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual Reality techniques are relatively new, having experienced significant development only during the last few years, in accordance with the progress achieved by computer science and hardware and software technologies. The study of such advanced design systems has led to the realization of an immersive environment in which new procedures for the evaluation of product prototypes, ergonomics and manufacturing operations have been simulated. The application of the environment realized to robotics, ergonomics, plant simulations and maintainability verifications has allowed us to highlight the advantages offered by a design methodology: the possibility of working on the industrial product in the first phase of conception; of placing the designer in front of the virtual reproduction of the product in a realistic way; and of interacting with the same concept. The aim of this book is to present an updated vision of VM through different aspects. We will describe the trends and results achieved in the automotive, aerospace and railway fields, in terms of the Digital Product Creation Process to design the product and the manufacturing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research into the targeting of drug substances to a specific disease site has enjoyed sustained activity for many decades. The reason for such fervent activity is the considerable clinical advantages that can be gained when the delivery system plays a pivotal role in determining where the drug is deposited. When compared to conventional formulations where no such control exists, such as parenteral and oral systems, the sophisticated targeting device can reduce side effects and limit collateral damage to surrounding normal tissue. No more so is this important than in the area of oncology when dose-limiting side effects are often encountered as an ever present difficulty. In this review, the types of colloidal carrier commonly used in targeted drug delivery are discussed, such as gold and polymeric colloids. In particular, the process of attaching targeting capabilities is considered, with reference to antibody technologies used as the targeting motifs. Nanotechnology has brought together a means to carry both a drug and targeting ligand in self-contained constructs and their applications to both clinical therapy and diagnosis are discussed.