89 resultados para adrenergic agonists, aging, hypertrophy, ventricular function, receptors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic administration of thiazolidinediones might predispose to cardiac hypertrophy. The aim was to investigate direct effects of rosiglitazone in rat ventricular cardiomyocytes maintained in vitro (24 h). Rosiglitazone (=10-5 M) did not increase protein synthesis and produced small inconsistent increases in cellular protein. In the presence of serum (10% v/v), but not insulin-like growth factor (IGF-1, 10-8 M) or insulin (1 U/ml), an interaction with rosiglitazone to stimulate protein synthesis was observed. The hypertrophic responses to noradrenaline (5×10-6 M), PMA (10-7 M) and ET-1 (10-7 M) were not attenuated by rosiglitazone. Rosiglitazone (10-7 M) did not influence protein synthesis in response to insulin (1 U/ml) and elevated glucose (2.5×10-2 M) alone or in combination, but attenuated the increase in protein mass observed in response to elevated glucose alone. In re-differentiated cardiomyocytes, a model of established hypertrophy, rosiglitazone (10-8 M–10-6 M) increased protein synthesis. Together, these data indicate that rosiglitazone does not initiate cardiomyocyte hypertrophy directly in vitro. However, during chronic administration, the interaction of rosiglitazone with locally-derived growth-regulating factors may make a modest contribution to cardiac remodelling and influence the extent of compensatory hypertrophy of the compromised rat heart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background/Aims: Somatostatin-14 (SRIF-14), a neuropeptide co-stored with acetylcholine in the cardiac parasympathetic innervation, exerts both positive and negative influences directly on contraction of ventricular cardiomyocytes, indicative of involvement of more than one of five known SRIF (SSTR) receptor subtypes. The aim was to characterize receptor subtype expression in adult rat ventricular cardiomyocytes and to investigate the influence of a series of SRIF (SSTR) subtype-selective agonists on contractile parameters. Methods: mRNA and protein expression of each receptor subtype were quantified by RT-PCR and immunoblotting respectively; for contraction studies, cells were stimulated at 0.5 Hz under basal conditions and in the presence of isoprenaline (ISO, 10-8M). Results: all five SRIF (SSTR) receptor subtypes were expressed in cardiomyocytes although SRIF1A (SSTR2) and SRIF2A (SSTR1) were less abundant than the other subtypes. L803087 (10-8M), a SRIF2B (SSTR4) agonist, attenuated ISO-stimulated peak contractile amplitude and prolonged relaxation time (T50). L796778 (10-7M), a SRIF1C (SSTR3) agonist, augmented basal and ISO-stimulated peak contractile amplitude; L779976 (10-8M) and L817818 (10-9M), agonists at SRIF1A (SSTR2) and SRIF1B (SSTR5) receptors, respectively, also augmented ISO-stimulated peak amplitude. Conclusion: these data support involvement of SRIF2B (SSTR4) receptors in the negative contractile effects of SRIF-14, while one or more of the three SRIF1 receptor subtypes (SSTR2, 3 or 5) may contribute to the positive contractile effects of SRIF-14.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE:
To elucidate the contribution of environmental versus genetic factors to the significant losses in visual function associated with normal aging.
DESIGN:
A classical twin study.
PARTICIPANTS:
Forty-two twin pairs (21 monozygotic and 21 dizygotic; age 57-75 years) with normal visual acuity recruited through the Australian Twin Registry.
METHODS:
Cone function was evaluated by establishing absolute cone contrast thresholds to flicker (4 and 14 Hz) and isoluminant red and blue colors under steady state adaptation. Adaptation dynamics were determined for both cones and rods. Bootstrap resampling was used to return robust intrapair correlations for each parameter.
MAIN OUTCOME MEASURES:
Psychophysical thresholds and adaptational time constants.
RESULTS:
The intrapair correlations for all color and flicker thresholds, as well as cone absolute threshold, were significantly higher in monozygotic compared with dizygotic twin pairs (P<0.05). Rod absolute thresholds (P = 0.28) and rod and cone recovery rate (P = 0.83; P = 0.79, respectively) did not show significant differences between monozygotic and dizygotic twins in their intrapair correlations, indicating that steady-state cone thresholds and flicker thresholds have a marked genetic contribution, in contrast with rod thresholds and adaptive processes, which are influenced more by environmental factors over a lifetime.
CONCLUSIONS:
Genes and the environment contribute differently to important neuronal processes in the retina and the role they may play in the decline in visual function as we age. Consequently, retinal structures involved in rod thresholds and adaptive processes may be responsive to appropriate environmental manipulation. Because the functions tested are commonly impaired in the early stages of age-related macular degeneration, which is known to have a multifactorial etiology, this study supports the view that pathogenic pathways early in the disease may be altered by appropriate environmental intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of rhodopsin as a structural prototype for the study of the whole superfamily of G protein-coupled receptors (GPCRs) is reviewed in an historical perspective. Discovered at the end of the nineteenth century, fully sequenced since the early 1980s, and with direct three-dimensional information available since the 1990s, rhodopsin has served as a platform to gather indirect information on the structure of the other superfamily members. Recent breakthroughs have elicited the solution of the structures of additional receptors, namely the beta 1- and beta 2-adrenergic receptors and the A(2A) adenosine receptor, now providing an opportunity to gauge the accuracy of homology modeling and molecular docking techniques and to perfect the computational protocol. Notably, in coordination with the solution of the structure of the A(2A) adenosine receptor, the first "critical assessment of GPCR structural modeling and docking" has been organized, the results of which highlighted that the construction of accurate models, although challenging, is certainly achievable. The docking of the ligands and the scoring of the poses clearly emerged as the most difficult components. A further goal in the field is certainly to derive the structure of receptors in their signaling state, possibly in complex with agonists. These advances, coupled with the introduction of more sophisticated modeling algorithms and the increase in computer power, raise the expectation for a substantial boost of the robustness and accuracy of computer-aided drug discovery techniques in the coming years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.