37 resultados para Weather forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prognostics concerning the day of the week on which kalendae ianuariae and Christmas Day fall, commonly known as the Revelatio Esdrae , purport to be a set of prophecies by the Biblical Esdras. They make predictions about the weather and other natural phenomena for the year to come, and they then extend their predictions to the field of human affairs. A remarkable number of copies of the Revelatio appear in English manuscripts from the tenth to the twelfth centuries. Some of these versions have been attributed to Bede and Abbo of Fleury as part of their computus works.

Both R. M. Liuzza and L. S. Chardonnens point out the frequent occurrence of the Revelatio in religious and scientific manuscripts and therefore reject the label of folklore, stressing instead the probable monastic origin of this prognostication. This study will provide the first complete collation and analysis of the surviving exemplars, to give as full an idea as possible of their circumstances of composition, their transmission, and their relationship to one another. It will consider how the Revelatio Esdrae was copied and used in Anglo-Saxon England, the audience to which it was addressed, and whether any conclusion can be drawn from its appearance in particular manuscripts, alongside certain other texts.

The regular occurrence of the Revelatio along with computistical material supports the case for its monastic origin and learned nature. Such a text would have been a helpful handbook to be used by monks and priests, and was among the standard holdings of continental and Anglo-Saxon monasteries and scriptoria, giving further proof of the monks’ intellectual eclecticism and their knowledge of the kinds of continental literature from which this text derives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent cold winters and prolonged periods of low wind speeds have prompted concerns about the increasing penetration of wind generation in the Irish and other northern European power systems. On the combined Republic of Ireland and Northern Ireland system there was in excess of 1.5 GW of installed wind power in January 2010. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal and day-to-day variations in travel behaviour and performance of private passenger vehicles can be partially explained by changes in weather conditions. Likewise, in the electricity sector, weather affects energy demand. The impact of weather conditions on private passenger vehicle performance, usership statistics and travel behaviour has been studied for conventional, internal combustion engine, vehicles. Similarly, weather-driven variability in electricity demand and generation has been investigated widely. The aim of these analyses in both sectors is to improve energy efficiency, reduce consumption in peak hours and reduce greenhouse gas emissions. However, the potential effects of seasonal weather variations on electric vehicle usage have not yet been investigated. In Ireland the government has set a target requiring 10% of all vehicles in the transport fleet to be powered by electricity by 2020 to meet part of its European Union obligations to reduce greenhouse gas emissions and increase energy efficiency. This paper fills this knowledge gap by compiling some of the published information available for internal combustion engine vehicles and applying the lessons learned and results to electric vehicles with an analysis of historical weather data in Ireland and electricity market data in a number of what-if scenarios. Areas particularly impacted by weather conditions are battery performance, energy consumption and choice of transportation mode by private individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s atmosphere of constrained defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. This paper presents a methodology that details a comprehensive and structured process in which to quantitatively explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a assessment environment for use in conjunction with defined technology scenarios, and will have a significant impact on resource allocation strategies for defense acquisition. The advantages and limitations of the method are discussed. In addition, an example TIF application, that of an Uninhabited Combat Aerial Vehicle, is presented and serves to illustrate the applicability of this methodology to a military system.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mortality models used for forecasting are predominantly based on the statistical properties of time series and do not generally incorporate an understanding of the forces driving secular trends. This paper addresses three research questions: Can the factors found in stochastic mortality-forecasting models be associated with real-world trends in health-related variables? Does inclusion of health-related factors in models improve forecasts? Do resulting models give better forecasts than existing stochastic mortality models? We consider whether the space spanned by the latent factor structure in mortality data can be adequately described by developments in gross domestic product, health expenditure and lifestyle-related risk factors using statistical techniques developed in macroeconomics and finance. These covariates are then shown to improve forecasts when incorporated into a Bayesian hierarchical model. Results are comparable or better than benchmark stochastic mortality models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the issue of choice of bandwidth in the application of semiparametric estimation of the long memory parameter in a univariate time series process. The focus is on the properties of forecasts from the long memory model. A variety of cross-validation methods based on out of sample forecasting properties are proposed. These procedures are used for the choice of bandwidth and subsequent model selection. Simulation evidence is presented that demonstrates the advantage of the proposed new methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for sustainable development has resulted in a rapid growth in wind power worldwide. Despite various approaches have been proposed to improve the accuracy and to overcome the uncertainties associated with traditional methods, the stochastic and variable nature of wind still remains the most challenging issue in accurately forecasting wind power. This paper presents a hybrid deterministic-probabilistic method where a temporally local ‘moving window’ technique is used in Gaussian Process to examine estimated forecasting errors. This temporally local Gaussian Process employs less measurement data while faster and better predicts wind power at two wind farms, one in the USA and the other in Ireland. Statistical analysis on the results shows that the method can substantially reduce the forecasting error while more likely generate Gaussian-distributed residuals, particularly for short-term forecast horizons due to its capability to handle the time-varying characteristics of wind power.