18 resultados para We Al-Li


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To describe the distribution of central corneal thickness (CCT), intraocular pressure (IOP), and their determinants and association with glaucoma in Chinese adults.DESIGN: Population-based cross-sectional study.METHODS: Chinese adults aged 50 years and older were identified using cluster random sampling in Liwan District, Guangzhou. CCT (both optical [OCCT] and ultrasound [UCCT]), intraocular pressure (by Tonopen, IOP), refractive error (by autorefractor, RE), radius of corneal curvature (RCC), axial length (AL), and body mass index (BMI) were measured, and history of hypertension and diabetes (DM) was collected by questionnaire. Right eye data were analyzed.RESULTS: The mean values of OCCT, UCCT, and IOP were 512 ± 29.0 μm, 542 ± 31.4 μm, and 15.2 ± 3.1 mm Hg, respectively. In multiple regression models, CCT declined with age (P < .001) and increased with greater RCC (P < .001) and DM (P = .037). IOP was positively associated with greater CCT (P < .001), BMI (P < .001), and hypertension (P < .001). All 25 persons with open-angle glaucoma had IOP <21 mm Hg. CCT did not differ significantly between persons with and without open- or closed-angle glaucoma. Among 65 persons with ocular hypertension (IOP >97.5th percentile), CCT (555 ± 29 μm) was significantly (P = .01) higher than for normal persons.CONCLUSIONS: The distributions of CCT and IOP in this study are similar to that for other Chinese populations, though IOP was lower than for European populations, possibly due to lower BMI and blood pressure. Glaucoma with IOP <21 mm Hg is common in this population. We found no association between glaucoma and CCT, though power (0.3) for this analysis was low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time-dependent close-coupling method is used to calculate electron-impact excitation cross sections for the Li(2s)--{\textgreater}Li(nl) and Li(2p)--{\textgreater}Li(nl) transitions at incident energies just above the ionization threshold. The implementation of the time-dependent close-coupling method on a nonuniform lattice allows the study of continuum-coupling effects in excitations to high principal quantum number, i.e., n{\textless}=10. Good agreement is found with R-matrix with pseudostates calculations, which also include continuum-coupling effects, for excitations to low principal quantum number, i.e., n{\textless}=4. Poor agreement is found with standard distorted-wave calculations for excitations to all principal quantum numbers, with differences still at the 50% level for n=10. We are able to give guidance as to the accuracy expected in the n3 extrapolation of nonperturbative close-coupling calculations of low n cross sections and rate coefficients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting life expectancy has become of upmost importance in society. Pension providers, insurance companies, government bodies and individuals in the developed world have a vested interest in understanding how long people will live for. This desire to better understand life expectancy has resulted in an explosion of stochastic mortality models many of which identify linear trends in mortality rates by time. In making use of such models for forecasting purposes we rely on the assumption that the direction of the linear trend (determined from the data used for fitting purposes) will not change in the future, recent literature has started to question this assumption. In this paper we carry out a comprehensive investigation of these types of models using male and female data from 30 countries and using the theory of structural breaks to identify changes in the extracted trends by time. We find that structural breaks are present in a substantial number of cases, that they are more prevalent in male data than in female data, that the introduction of additional period factors into the model reduces their presence, and that allowing for changes in the trend improves the fit and forecast substantially.