108 resultados para Water barrier properties
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.
Resumo:
The formidable barrier properties of the uppermost layer of the skin, the stratum corneum, impose significant limitations for successful systemic delivery of broad range of therapeutic molecules particularly macromolecules and genetic material. Microneedle (MN) has been proposed as a strategy to breach the stratum corneum barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves use of micron sized needles fabricated of different materials and geometries to create transient aqueous conduits across the skin. MN, alone or with other enhancing strategies, has been demonstrated to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo experiments. This suggested the promising use of MN technology for various possible clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. MN has been proved as minimally invasive and painless in human subjects. This review article focuses on recent and future developments for MN technology including the latest type of MN design, challenges and strategies in MNs development as well as potential safety aspects based on comprehensive literature review pertaining to MN studies to date. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The influence of the layered silicate clay platelets on the nitrogen permeation properties of hydrogenated nitrile butadiene rubber (HNBR)/nanoclay nanocomposites has been investigated. Nanocomposites of HNBR modified with different percentages of the organoclay are processed through various routes. Commercially available organoclay (CLOISITE 15A) and various silane-coupling agents are used to improve the dispersion of the nanoclay in HNBR. A total of 10 different formulations of nanocomposites are manufactured. The addition of the organoclay has resulted in a significant enhancement of the nitrogen barrier properties of the manufactured nanocomposite. The mechanism of the reduction in the permeability is explained through the changes in the morphology and its bond to the filler. These changes are confirmed through examination of the morphology using x-ray diffraction, transmission electron microscope, and dynamic mechanical thermal analysis. There has been a drastic reduction up to 55.7% in nitrogen permeability. The reduction in gas permeation in HNBR is attributed to uniformly exfoliated clay platelets. Finally, three different permeability models, namely, the Nielsen model, modified Nielsen model, and Cussler model, have also been considered to predict the permeability behavior of nanocomposites with different volume filler fractions. The experimental values of gas permeability have been compared with theoretical models. It is observed that the modified Nielsen model closely matches with the measured permeation behavior. © 2011 Wiley Periodicals, Inc.
Resumo:
The molar polarisability and molar volume for 71 ionic liquids were extracted from 157 measurements of their refractive index and density, which were then further deconstructed into atomic contributions by means of a Designed Regression analysis. Using this approach, the density and refractive index for any chosen ionic liquid with alkyl-substituted imidazolium cations can be predicted in good agreement with experimental data.
Resumo:
There is a significant increase in people that choose to follow an avoidance diet, especially excluding gluten. Unlike previously, there is now a demand for ‘no compromise’ gluten-free cereal products that have the same properties as their wheat contain counterparts. This is very challenging for the bakers and the cereal technologists due to the functional role of the gluten network in some of these products. Numerous combinations of raw materials form natural sources have been studied and critically evaluated in this review. Most of the gluten-free products are made of native and modified starches blended with different hydrocolloids due to their structure-building and water binding properties. These ingredients are added to a gluten-free flour, such as rice and corn. The legislation framework, formulations for manufacturing of highl nutritional value bread, pasta and cakes/biscuits as well as quality assurance aspects for the gluten-free manufacturers are discussed in this review.
Resumo:
Introduction: Anterior and posterior segment eye diseases are highly challenging to treat, due to the barrier properties and relative inaccessibility of the ocular tissues. Topical eye drops and systemically delivered treatments result in low bioavailability. Alternatively, direct injection of medication into the ocular tissues is clinically employed to overcome the barrier properties, but injections cause significant tissue damage and are associated with a number of untoward side effects and poor patient compliance. Microneedles (MNs) has been recently introduced as a minimally invasive means for localizing drug formulation within the target ocular tissues with greater precision and accuracy than the hypodermic needles. Areas covered: This review article seeks to provide an overview of a range of challenges that are often faced to achieve efficient ocular drug levels within targeted tissue(s) of the eye. It also describes the problems encountered using conventional hypodermic needle-based ocular injections for anterior and posterior segment drug delivery. It discusses research carried out in the field of MNs, to date.
Expert opinion: MNs can aid in localization of drug delivery systems within the selected ocular tissue. And, hold the potential to revolutionize the way drug formulations are administered to the eye. However, the current limitations and challenges of MNs application warrant further research in this field to enable its widespread clinical application.
Resumo:
To study some of the interfacial properties of PtSi/Si diodes, Schottky structures were fabricated on (100) crystalline silicon substrates by conventional thermal evaporation of Pt on Si followed by annealing at different temperatures (from 400 degrees C to 700 degrees C) to form PtSi. The PtSi/n-Si diodes, all yielded Schottky barrier (SB) heights that are remarkably temperature dependent. The temperature range (20-290 K) over which the I-V characteristics were measured in the present study is broader with a much lower limit (20 K), than what is usually reported in literature. These variations in the barrier height are adequately interpreted by introducing spatial inhomogeneity into the barrier potential with a Gaussian distribution having a mean barrier of 0.76 eV and a standard deviation of 30 meV. Multi-frequency capacitance-voltage measurements suggest that the barrier is primarily controlled by the properties of the silicide-silicon interface. The forward C-V characteristics, in particular, show small peaks at low frequencies that can be ascribed to interface states rather than to a series resistance effect.
Resumo:
New protic ionic liquids (PILs) based on the diisopropyl-ethylammonium cation have been synthesized through a simple and atom-economic neutralization reaction between the diisopropyl-ethylamine and selected carboxylic acid. Densities and rheological properties were then measured for two original diisopropyl-ethylammonium-based protic ionic liquids (heptanoate and octanoate) at 298.15 K and atmospheric pressure. The effect of the presence of water or acetonitrile on the measured values was also examined over the whole composition range at 298.15 K and atmospheric pressure. From these values, excess properties were calculated and correlated by using a Redlich-Kister-type equation. Finally, a qualitative analysis of the evolution of studied properties with the alkyl chain length of the anion and with the presence or not of water (or acetonitrile) was performed. From this analysis, it appears that selected PILs and their mixtures with water or acetonitrile have a non-Newtonian shear thickening behavior, and the addition of water or acetonitrile on these PILs increases this phenomena by the formation of aggregates in these media.
Resumo:
Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.
Resumo:
We report here the first systematic study of the effect of impurities and additives (e.g., water, chloride, and cosolvents) on the physical properties of room-temperature ionic liquids. Remarkably, it was discovered that the viscosity of mixtures was dependent mainly on the mole fraction of added molecular solvents and only to a lesser extent upon their identity, allowing viscosity changes during the course of a reaction to be entirely predictable. While the addition of such molecular solvents decreases the viscosity and density, chloride impurities, arising from the preparation of the ionic liquids, increase viscosity dramatically. The commonly used methods of preparation were validated with respect to chloride impurity.
Resumo:
The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.
Resumo:
Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.