18 resultados para Water Microbiology.
Resumo:
This review considers the effect of ethanol-induced water stress on yeast metabolism and integrity. Ethanol causes water stress by lowering water activity (a(w)) and thereby interferes with hydrogen bonding within and between hydrated cell components, ultimately disrupting enzyme and membrane strut and function. The impact of ethanol on the energetic status of water is considered in relation to cell metabolism. Even moderate ethanol concentrations (5 to 10%, w/v) cause a sufficient reduction of a(w) to have metabolic consequences. When exposed to ethanol, cells synthesize compatible solutes such as glycerol and trehalose that protect against water stress and hydrogen-bond disruption. Ethanol affects the control of gene expression by the mechanism that is normally associated with (so-called) osmotic control. Furthermore, ethanol-induced water stress has ecological implications.
Resumo:
The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.