214 resultados para Warm Dense Matter
Resumo:
The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.
Resumo:
Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.
Resumo:
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10(16)W cm(-2) at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
We have resolved the solid-liquid phase transition of carbon at pressures around 150GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30g/cm3 to 2.25g/cm3. In this way, temperatures from 5700K to 14,500K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95keVat a scattering angle of 126°, which is very sensitive to the solid-liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3g/cm3 and 1.85g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25g/cm3 remain solid, probably in a diamond-like state.
Resumo:
We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 10(15) W cm(-2) laser pulse have previously been shown to convert up to similar to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (similar to 4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.
Resumo:
In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.
Resumo:
The linear and nonlinear properties of ion acoustic excitations propagating in warm dense electron-positron-ion plasma are investigated. Electrons and positrons are assumed relativistic and degenerate, following the Fermi-Dirac statistics, whereas the warm ions are described by a set of classical fluid equations. A linear dispersion relation is derived in the linear approximation. Adopting a reductive perturbation method, the Korteweg-de Vries equation is derived, which admits a localized wave solution in the form of a small-amplitude weakly super-acoustic pulse-shaped soliton. The analysis is extended to account for arbitrary amplitude solitary waves, by deriving a pseudoenergy-balance like equation, involving a Sagdeev-type pseudopotential. It is shown that the two approaches agree exactly in the small-amplitude weakly super-acoustic limit. The range of allowed values of the pulse soliton speed (Mach number), wherein solitary waves may exist, is determined. The effects of the key plasma configuration parameters, namely, the electron relativistic degeneracy parameter, the ion (thermal)-to-the electron (Fermi) temperature ratio, and the positron-to-electron density ratio, on the soliton characteristics and existence domain, are studied in detail. Our results aim at elucidating the characteristics of ion acoustic excitations in relativistic degenerate plasmas, e.g., in dense astrophysical objects, where degenerate electrons and positrons may occur.
Resumo:
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.
Resumo:
In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We present differential x-ray scattering cross sections for a radiatively heated plasma showing overall consistency, in both form and absolute value, with theoretical simulations. In particular, the evolution of the plasma from a strongly coupled high density phase to a lower density weakly coupled phase is quite clearly shown in both experiment and simulation. The success of this experiment shows that x-ray scattering has the potential to become an extremely useful diagnostic technique for dense plasma physics.