31 resultados para Wallenstein, Albrecht Wenzel Eusebius von, Herzog von Friedland, 1583-1634
Resumo:
The hypoxia-inducible factors (HIFs; isoforms HIF-1 alpha, HIF-2 alpha, HIF-3 alpha) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2 alpha gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2 alpha gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2 alpha gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2 alpha gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1 alpha is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.-Formenti, F., Beer, P. A., Croft, Q. P. P., Dorrington, K. L., Gale, D. P., Lappin, T. R. J., Lucas, G. S., Maher, E. R., Maxwell, P. H., McMullin, M. F., O'Connor, D. F., Percy, M. J., Pugh, C. W., Ratcliffe, P. J., Smith, T. G., Talbot, N. P., Robbins, P. A. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2 alpha gain-of-function mutation. FASEB J. 25, 2001-2011 (2011). www.fasebj.org
Resumo:
Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.
Resumo:
Yttrium triflate or triflic acid catalysed Povarov reaction of methyl anthranilate with ethyl vinyl ether, both as aldehyde surrogate and as alkene, gave the desired 2-methyl-4-ethoxytetrahydroquinoline diastereoisomers as the major products along with four component coupling von Miller adducts. A proton NMR-study, using yttrium triflate as catalyst, revealed that the cis-diastereoisomers were the initial major products in both the Povarov and von Miller reactions but that these isomerised to the trans-diastereoisomers under the reaction conditions. Two distinct pathways for forming von Miller adducts were uncovered with the initial Povarov products being converted to von Miller adducts under the reaction conditions. Replacement of the 4-ethoxy with a 4-methoxy group under acidic conditions gave predominantly the trans-diastereoisomer, which was subsequently converted to a cis/trans mixture of the tetrahydroquinoline antibiotic helquinoline. It was also possible to convert the von Miller products to Povarov products under acidic conditions