78 resultados para Volume sanguineo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimidazolium. trifluoromethylsulfonate ([C(4)mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(4)mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of similar to 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of root(rho eta) approximate to 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications such as soil, rock and oil-well grouting all require enormous amounts of cement and are good examples of areas where a high volume of fly ash could partially replace cement to produce low-cost, environmentally safe and durable concrete. There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater grouts such as washout resistance and compressive strength. This paper presents statistical models developed using a fractorial design which was carried out to model the influence of key parameters on properties affecting the performance of underwater grout. Such responses of fluidity included mini-slump and flow time measured by Marsh cone, washout resistance, unit weight and compressive strength. The models are valid for mixes with 0.40 to 0.60 water-to-cementitious materials ratio, 0.02 to 0.08% of anti-washout admixture, by mass of binder, and 0.6 to 1.8% of superplasticizer, by mass of cementitious materials. The grout was made with 50% of pulverized-fuel ash replacement, by mass ofcementitious materials. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper highlighted the influence of W/CM and dosage of antiwashout admixture and superplasticizer on fluidity, washout resistance and compressive strength and attempted also to demonstrate the usefulness of the models to improve understanding of trade-offs between parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Entries: Peacelines; Public Housing in Northern Ireland in the Twentieth Century; Interpretive Centres, NI Peacelines, NI Social Housing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of volume shape factor on crystal size distribution (CSD) is usually ignored to simplify the analysis of population balance equation. In the present work, the CSD of fragments generated from a mechanically stirred crystallizer as the result of attrition mechanism has been reported when the volume shape factor conforms to normal distribution. The physical model of GAHN and MERSMANN which relates the attrition resistance of a crystalline substances to its mechanical properties has been employed. The simulation of fragment size distribution was performed by Monte Carlo (MC) technique. The results are compared with those reported by GAHN and MERSMANN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microfluidic glass chip system incorporating a quartz crystal microbalance (QCM) to measure the square root of the viscosity-density product of room temperature ionic liquids (RTILs) is presented. The QCM covers a central recess on a glass chip, with a seal formed by tightly clamping from above outside the sensing region. The change in resonant frequency of the QCM allows for the determination of the square root viscosity-density product of RTILs to a limit of similar to 10 kg m(-2) s(-0.5). This method has reduced the sample size needed for characterization from 1.5 ml to only 30 mu l and allows the measurement to be made in an enclosed system.