31 resultados para Visual Information
Resumo:
PURPOSE: Subjects with significant peripheral field loss (PFL) self report difficulty in street crossing. In this study, we compared the traffic gap judgment ability of fully sighted and PFL subjects to determine whether accuracy in identifying crossable gaps was adversely affected because of field loss. Moreover, we explored the contribution of visual and nonvisual factors to traffic gap judgment ability. METHODS: Eight subjects with significant PFL as a result of advanced retinitis pigmentosa or glaucoma with binocular visual field <20 degrees and five age-matched normals (NV) were recruited. All subjects were required to judge when they perceived it was safe to cross at a 2-way 4-lane street while they stood on the curb. Eye movements were recorded by an eye tracker as the subjects performed the decision task. Movies of the eye-on-scene were made offline and fixation patterns were classified into either relevant or irrelevant. Subjects' street-crossing behavior, habitual approach to street crossing, and perceived difficulties were assessed. RESULTS: Compared with normal vision (NV) subjects, the PFL subjects identified 12% fewer crossable gaps while making 23% more errors by identifying a gap as crossable when it was too short (p < 0.05). The differences in traffic gap judgment ability of the PFL subjects might be explained by the significantly smaller fixation area (p = 0.006) and fewer fixations distributed to the relevant tasks (p = 0.001). The subjects' habitual approach to street crossing and perceived difficulties in street crossing (r > 0.60) were significantly correlated with traffic gap judgment performance. CONCLUSIONS: As a consequence of significant field loss, limited visual information about the traffic environment can be acquired, resulting in significantly reduced performance in judging safe crossable gaps. This poor traffic gap judgment ability in the PFL subjects raises important concerns for their safety when attempting to cross the street.
Resumo:
Accurate estimates of the time-to-contact (TTC) of approaching objects are crucial for survival. We used an ecologically valid driving simulation to compare and contrast the neural substrates of egocentric (head-on approach) and allocentric (lateral approach) TTC tasks in a fully factorial, event-related fMRI design. Compared to colour control tasks, both egocentric and allocentric TTC tasks activated left ventral premotor cortex/frontal operculum and inferior parietal cortex, the same areas that have previously been implicated in temporal attentional orienting. Despite differences in visual and cognitive demands, both TTC and temporal orienting paradigms encourage the use of temporally predictive information to guide behaviour, suggesting these areas may form a core network for temporal prediction. We also demonstrated that the temporal derivative of the perceptual index tau (tau-dot) held predictive value for making collision judgements and varied inversely with activity in primary visual cortex (V1). Specifically, V1 activity increased with the increasing likelihood of reporting a collision, suggesting top-down attentional modulation of early visual processing areas as a function of subjective collision. Finally, egocentric viewpoints provoked a response bias for reporting collisions, rather than no-collisions, reflecting increased caution for head-on approaches. Associated increases in SMA activity suggest motor preparation mechanisms were engaged, despite the perceptual nature of the task.
Resumo:
We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.
Resumo:
Previous studies have attempted to identify sources of contextual information which can facilitate dual adaptation to two variants of a novel environment, which are normally prone to interference. The type of contextual information previously used can be grouped into two broad categories: that which is arbitrary to the motor system, such as a colour cue, and that which is based on an internal property of the motor system, such as a change in movement effector. The experiments reported here examined whether associating visuomotor rotations to visual targets and movements of different amplitude would serve as an appropriate source of contextual information to enable dual adaptation. The results indicated that visual target and movement amplitude is not a suitable source of contextual information to enable dual adaptation in our task. Interference was observed in groups who were exposed to opposing visuomotor rotations, or a visuomotor rotation and no rotation, both when the onset of the visuomotor rotations was sudden, or occurred gradually over the course of training. Furthermore, the pattern of interference indicated that the inability to dual adapt was a result of the generalisation of learning between the two visuomotor mappings associated with each of the visual target and movement amplitudes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this journal article, we take multiple secrets into consideration and generate a key share for all the secrets; correspondingly, we share each secret using this key share. The secrets are recovered when the key is superimposed on the combined share in different locations using the proposed scheme. Also discussed and illustrated within this paper is how to embed a share of visual cryptography into halftone and colour images. The remaining share is used as a key share in order to perform the decryption. It is also worth noting that no information regarding the secrets is leaked in any of our proposed schemes. We provide the corresponding results in this paper.
Resumo:
In this paper, we present a new approach to visual speech recognition which improves contextual modelling by combining Inter-Frame Dependent and Hidden Markov Models. This approach captures contextual information in visual speech that may be lost using a Hidden Markov Model alone. We apply contextual modelling to a large speaker independent isolated digit recognition task, and compare our approach to two commonly adopted feature based techniques for incorporating speech dynamics. Results are presented from baseline feature based systems and the combined modelling technique. We illustrate that both of these techniques achieve similar levels of performance when used independently. However significant improvements in performance can be achieved through a combination of the two. In particular we report an improvement in excess of 17% relative Word Error Rate in comparison to our best baseline system.
Resumo:
In older adults, cognitive resources play a key role in maintaining postural stability. In the present study, we evaluated whether increasing postural instability using sway referencing induces changes in resource allocation in dual-task performance leading older adults to prioritize the more age-salient posture task over a cognitive task. Young and older adults participated in the study which comprised two sessions. In the first session, three posture tasks (stable, sway reference visual, sway reference somatosensory) and a working memory task (n-back) were examined. In the second session, single- and dual-task performance of posture and memory were assessed. Postural stability improved with session. Participants were more unstable in the sway reference conditions, and pronounced age differences were observed in the somatosensory sway reference condition. In dual-task performance on the stable surface, older adults showed an almost 40% increase in instability compared to single-task. However, in the sway reference somatosensory condition, stability was the same in single- and dual-task performance, whereas pronounced (15%) costs emerged for cognition. These results show that during dual-tasking while standing on a stable surface, older adults have the flexibility to allow an increase in instability to accommodate cognitive task performance. However, when instability increases by means of compromising somatosensory information, levels of postural control are kept similar in single- and dual-task, by utilizing resources otherwise allocated to the cognitive task. This evidence emphasizes the flexible nature of resource allocation, developed over the life-span to compensate for age-related decline in sensorimotor and cognitive processing.
Resumo:
The foundational concept of Network Enabled Capability relies on effective, timely information sharing. This information is used in analysis, trade and scenario studies, and ultimately decision-making. In this paper, the concept of visual analytics is explored as an enabler to facilitate rapid, defensible, and superior decision-making. By coupling analytical reasoning with the exceptional human capability to rapidly internalize and understand visual data, visual analytics allows individual and collaborative decision-making to occur in the face of vast and disparate data, time pressures, and uncertainty. An example visual analytics framework is presented in the form of a decision-making environment centered on the Lockheed C-5A and C-5M aircraft. This environment allows rapid trade studies to be conducted on design, logistics, and capability within the aircraft?s operational roles. Through this example, the use of a visual analytics decision-making environment within a military environment is demonstrated.
Resumo:
Here we investigated the influence of angular separation between visual and motor targets on concurrent adaptation to two opposing visuomotor rotations. We inferred the extent of generalisation between opposing visuomotor rotations at individual target locations based on whether interference (negative transfer) was present. Our main finding was that dual adaptation occurred to opposing visuomotor rotations when each was associated with different visual targets but shared a common motor target. Dual adaptation could have been achieved either within a single sensorimotor map (i.e. with different mappings associated with different ranges of visual input), or by forming two different internal models (the selection of which would be based on contextual information provided by target location). In the present case, the pattern of generalisation was dependent on the relative position of the visual targets associated with each rotation. Visual targets nearest the workspace of the opposing visuomotor rotation exhibited the most interference (i.e. generalisation). When the minimum angular separation between visual targets was increased, the extent of interference was reduced. These results suggest that the separation in the range of sensory inputs is the critical requirement to support dual adaptation within a single sensorimotor mapping.
Resumo:
A rapidly increasing number of Web databases are now become accessible via
their HTML form-based query interfaces. Query result pages are dynamically generated
in response to user queries, which encode structured data and are displayed for human
use. Query result pages usually contain other types of information in addition to query
results, e.g., advertisements, navigation bar etc. The problem of extracting structured data
from query result pages is critical for web data integration applications, such as comparison
shopping, meta-search engines etc, and has been intensively studied. A number of approaches
have been proposed. As the structures of Web pages become more and more complex, the
existing approaches start to fail, and most of them do not remove irrelevant contents which
may a®ect the accuracy of data record extraction. We propose an automated approach for
Web data extraction. First, it makes use of visual features and query terms to identify data
sections and extracts data records in these sections. We also represent several content and
visual features of visual blocks in a data section, and use them to ¯lter out noisy blocks.
Second, it measures similarity between data items in di®erent data records based on their
visual and content features, and aligns them into di®erent groups so that the data in the
same group have the same semantics. The results of our experiments with a large set of
Web query result pages in di®erent domains show that our proposed approaches are highly
e®ective.
Resumo:
Background: Visual impairment (VI) is rising in prevalence and contributing to increasing morbidity, particularly among older people. Understanding patients' problems is fundamental to achieving optimal health outcomes but little is known about how VI impacts on self-management of medication.
Aim: To compare issues relating to medication self-management between older people with and without VI.
Design and setting: Case-control study with participants aged =65 years, prescribed at least two long-term oral medications daily, living within the community.
Method: The study recruited 156 patients with VI (best corrected visual acuity [BCVA] 6/18 to 3/60) at low-vision clinics; community optometrists identified 158 controls (BCVA 6/9 or better). Researchers visited participants in their homes, administered two validated questionnaires to assess medication adherence (Morisky; Medication Adherence Report Scale [MARS]), and asked questions about medication self-management, beliefs, and support.
Results: Approximately half of the participants in both groups reported perfect adherence on both questionnaires (52.5% Morisky; 43.3%, MARS). Despite using optical aids, few (3%) with VI could read medication information clearly; 24% had difficulty distinguishing different tablets. More people with VI (29%) than controls (13%) (odds ratio [OR] = 2.8; 95% confidence interval [CI] = 1.6 to 5.0) needed help managing their medication, from friends (19% versus 10%) or pharmacists (10% versus 2.5%; OR = 4.4, 95% CI = 1.4 to 13.5); more received social service support (OR = 7.1; 95% CI = 3.9 to 12.9).
Conclusion: Compared to their peers without VI, older people with VI are more than twice as likely to need help in managing medication. In clinical practice in primary care, patients' needs for practical support in taking prescribed treatment must be recognised. Strategies for effective medication self-management should be explored.
Resumo:
The cerebral cortex contains circuitry for continuously computing properties of the environment and one's body, as well as relations among those properties. The success of complex perceptuomotor performances requires integrated, simultaneous use of such relational information. Ball catching is a good example as it involves reaching and grasping of visually pursued objects that move relative to the catcher. Although integrated neural control of catching has received sparse attention in the neuroscience literature, behavioral observations have led to the identification of control principles that may be embodied in the involved neural circuits. Here, we report a catching experiment that refines those principles via a novel manipulation. Visual field motion was used to perturb velocity information about balls traveling on various trajectories relative to a seated catcher, with various initial hand positions. The experiment produced evidence for a continuous, prospective catching strategy, in which hand movements are planned based on gaze-centered ball velocity and ball position information. Such a strategy was implemented in a new neural model, which suggests how position, velocity, and temporal information streams combine to shape catching movements. The model accurately reproduces the main and interaction effects found in the behavioral experiment and provides an interpretation of recently observed target motion-related activity in the motor cortex during interceptive reaching by monkeys. It functionally interprets a broad range of neurobiological and behavioral data, and thus contributes to a unified theory of the neural control of reaching to stationary and moving targets.
Resumo:
To date, the usefulness of stereoscopic visual displays in research on manual interceptive actions has never been examined. In this study, we compared the catching movements of 8 right-handed participants (6 men, 2 women) in a real environment (with suspended balls swinging past the participant, requiring lateral hand movements for interception) with those in a situation in which similar virtual ball trajectories were displayed stereoscopically in a virtual reality system (Cave Automated Virtual Environment [CAVE]; Cruz-Neira, Sandin, DeFranti, Kenyon, & Hart, 1992) with the head fixated. Catching the virtual ball involved grasping a lightweight ball attached to the palm of the hand. The results showed that, compared to real catching, hand movements in the CAVE were (a) initiated later, (b) less accurate, (c) smoother, and (d) aimed more directly at the interception point. Although the latter 3 observations might be attributable to the delayed movement initiation observed in the CAVE, this delayed initiation might have resulted from the use of visual displays. This suggests that stereoscopic visual displays such as present in many virtual reality systems should be used circumspectly in the experimental study of catching and should be used only to address research questions requiring no detailed analysis of the information-based online control of the catching movements.
Resumo:
PURPOSE. To investigate the methods used in contemporary ophthalmic literature to designate visual acuity (VA). METHODS. Papers in all 2005 editions of five ophthalmic journals were considered. Papers were included if (1) VA, vision, or visual function was mentioned in the abstract and (2) if the study involved age-related macular degeneration, cataract, or refractive surgery. If a paper was selected on the basis of its abstract, the full text of the paper was examined for information on the method of refractive correction during VA testing, type of chart used to measure VA, specifics concerning chart features, testing protocols, and data analysis and means of expressing VA in results. RESULTS. One hundred twenty-eight papers were included. The most common type of charts used were described as logMAR-based. Although most (89.8%) of the studies reported on the method of refractive correction during VA testing, only 58.6% gave the chart design, and less than 12% gave any information whatsoever on chart features or measurement procedures used. CONCLUSIONS. The methods used and the approach to analysis were rarely described in sufficient detail to allow others to replicate the study being reported. Sufficient detail should be given on VA measurement to enable others to duplicate the research. The authors suggest that charts adhering to Bailey-Lovie design principles always be used to measure vision in prospective studies and their use encouraged in clinical settings. The distinction between the terms logMAR, an acuity notation, and Bailey-Lovie or ETDRS as chart types should be adhered to more strictly. Copyright © Association for Research in Vision and Ophthalmology.