68 resultados para Vision-based row tracking algorithm
Resumo:
A practical machine-vision-based system is developed for fast detection of defects occurring on the surface of bottle caps. This system can be used to extract the circular region as the region of interests (ROI) from the surface of a bottle cap, and then use the circular region projection histogram (CRPH) as the matching features. We establish two dictionaries for the template and possible defect, respectively. Due to the requirements of high-speed production as well as detecting quality, a fast algorithm based on a sparse representation is proposed to speed up the searching. In the sparse representation, non-zero elements in the sparse factors indicate the defect's size and position. Experimental results in industrial trials show that the proposed method outperforms the orientation code method (OCM) and is able to produce promising results for detecting defects on the surface of bottle caps.
Resumo:
Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.
Resumo:
In this paper, a novel motion-tracking scheme using scale-invariant features is proposed for automatic cell motility analysis in gray-scale microscopic videos, particularly for the live-cell tracking in low-contrast differential interference contrast (DIC) microscopy. In the proposed approach, scale-invariant feature transform (SIFT) points around live cells in the microscopic image are detected, and a structure locality preservation (SLP) scheme using Laplacian Eigenmap is proposed to track the SIFT feature points along successive frames of low-contrast DIC videos. Experiments on low-contrast DIC microscopic videos of various live-cell lines shows that in comparison with principal component analysis (PCA) based SIFT tracking, the proposed Laplacian-SIFT can significantly reduce the error rate of SIFT feature tracking. With this enhancement, further experimental results demonstrate that the proposed scheme is a robust and accurate approach to tackling the challenge of live-cell tracking in DIC microscopy.
Resumo:
Based on an algorithm for pattern matching in character strings, we implement a pattern matching machine that searches for occurrences of patterns in multidimensional time series. Before the search process takes place, time series are encoded in user-designed alphabets. The patterns, on the other hand, are formulated as regular expressions that are composed of letters from these alphabets and operators. Furthermore, we develop a genetic algorithm to breed patterns that maximize a user-defined fitness function. In an application to financial data, we show that patterns bred to predict high exchange rates volatility in training samples retain statistically significant predictive power in validation samples.
Resumo:
The aim of this paper is to report the preliminary development of an automatic collision avoidance technique for unmanned marine craft based on standardised rules, COLREGs, defined by the International Maritime Organisation. It is noted that all marine surface vessels are required to adhere to COLREGs at all times in order to minimise or eliminate the risk of collisions. The approach presented is essentially a reactive path planning algorithm which provides feedback to the autopilot of an unmanned vessel or the human captain of a manned ship for steering the craft safely. The proposed strategy consists of waypoint guidance by line-of-sight coupled with a manual biasing scheme. This is applied to the dynamic model of an unmanned surface vehicle. A simple PID autopilot is incorporated to ensure that the vessel adheres to the generated seaway. It is shown through simulations that the resulting scheme is able to generate viable trajectories in the presence of both stationary and dynamic obstacles. Rules 8 and 14 of the COLREGs, which apply to the amount of manoeuvre and to a head-on scenario respectively are simulated. A comparison is also made with an offline or deliberative grid-based path planning algorithm which has been modified to generate COLREGs-compliant routes.
Resumo:
This work presents a novel approach for human action recognition based on the combination of computer vision techniques and common-sense knowledge and reasoning capabilities. The emphasis of this work is on how common sense has to be leveraged to a vision-based human action recognition so that nonsensical errors can be amended at the understanding stage. The proposed framework is to be deployed in a realistic environment in which humans behave rationally, that is, motivated by an aim or a reason. © 2012 Springer-Verlag.
Resumo:
Sparse representation based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using L1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximised. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection and weighted least squares techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a weighed least squares (WLS) method to obtain the representation coefficients. To further reduce the computational complexity, structurally random projection is used to reduce the dimensionality of the feature space while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.
Resumo:
Social media channels, such as Facebook or Twitter, allow for people to express their views and opinions about any public topics. Public sentiment related to future events, such as demonstrations or parades, indicate public attitude and therefore may be applied while trying to estimate the level of disruption and disorder during such events. Consequently, sentiment analysis of social media content may be of interest for different organisations, especially in security and law enforcement sectors. This paper presents a new lexicon-based sentiment analysis algorithm that has been designed with the main focus on real time Twitter content analysis. The algorithm consists of two key components, namely sentiment normalisation and evidence-based combination function, which have been used in order to estimate the intensity of the sentiment rather than positive/negative label and to support the mixed sentiment classification process. Finally, we illustrate a case study examining the relation between negative sentiment of twitter posts related to English Defence League and the level of disorder during the organisation’s related events.
Resumo:
This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.
Resumo:
There is a need to provide rapid, sensitive, and often high throughput detection of pathogens in diagnostic virology. Viral gastroenteritis is a serious health issue often leading to hospitalization in the young, the immunocompromised and the elderly. The common causes of viral gastroenteritis include rotavirus, norovirus (genogroups I and II), astrovirus, and group F adenoviruses (serotypes 40 and 41). This article describes the work-up of two internally controlled multiplex, probe-based PCR assays and reports on the clinical validation over a 3-year period, March 2007 to February 2010. Multiplex assays were developed using a combination of TaqMan™ and minor groove binder (MGB™) hydrolysis probes. The assays were validated using a panel of 137 specimens, previously positive via a nested gel-based assay. The assays had improved sensitivity for adenovirus, rotavirus, and norovirus (97.3% vs. 86.1%, 100% vs. 87.8%, and 95.1% vs. 79.5%, respectively) and also more specific for targets adenovirus, rotavirus, and norovirus (99% vs. 95.2%, 100% vs. 93.6%, and 97.9% vs. 92.3%, respectively). For the specimens tested, both assays had equal sensitivity and specificity for astrovirus (100%). Overall the probe-based assays detected 16 more positive specimens than the nested gel-based assay. Post-introduction to the routine diagnostic service, a total of 9,846 specimens were processed with multiplex 1 and 2 (7,053 pediatric, 2,793 adult) over the 3-year study period. This clinically validated, probe-based multiplex testing algorithm allows highly sensitive and timely diagnosis of the four most prominent causes of viral gastroenteritis.
Resumo:
In this paper we present a new method for simultaneously determining three dimensional (3-D) shape and motion of a non-rigid object from uncalibrated two dimensional (2- D) images without assuming the distribution characteristics. A non-rigid motion can be treated as a combination of a rigid rotation and a non-rigid deformation. To seek accurate recovery of deformable structures, we estimate the probability distribution function of the corresponding features through random sampling, incorporating an established probabilistic model. The fitting between the observation and the projection of the estimated 3-D structure will be evaluated using a Markov chain Monte Carlo based expectation maximisation algorithm. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results.
Resumo:
We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the data set and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km s(-1), with maximum values of 7 km s(-1). Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.
Resumo:
Recent studies suggested that the control of hand movements in catching involves continuous vision-based adjustments. More insight into these adjustments may be gained by examining the effects of occluding different parts of the ball trajectory. Here, we examined the effects of such occlusion on lateral hand movements when catching balls approaching from different directions, with the occlusion conditions presented in blocks or in randomized order. The analyses showed that late occlusion only had an effect during the blocked presentation, and early occlusion only during the randomized presentation. During the randomized presentation movement biases were more leftward if the preceding trial was an early occlusion trial. The effect of early occlusion during the randomized presentation suggests that the observed leftward movement bias relates to the rightward visual acceleration inherent to the ball trajectories used, while its absence during the blocked presentation seems to reflect trial-by-trial adaptations in the visuomotor gain, reminiscent of dynamic gain control in the smooth pursuit system. The movement biases during the late occlusion block were interpreted in terms of an incomplete motion extrapolation--a reduction of the velocity gain--caused by the fact that participants never saw the to-be-extrapolated part of the ball trajectory. These results underscore that continuous movement adjustments for catching do not only depend on visual information, but also on visuomotor adaptations based on non-visual information.
Resumo:
Web sites that rely on databases for their content are now ubiquitous. Query result pages are dynamically generated from these databases in response to user-submitted queries. Automatically extracting structured data from query result pages is a challenging problem, as the structure of the data is not explicitly represented. While humans have shown good intuition in visually understanding data records on a query result page as displayed by a web browser, no existing approach to data record extraction has made full use of this intuition. We propose a novel approach, in which we make use of the common sources of evidence that humans use to understand data records on a displayed query result page. These include structural regularity, and visual and content similarity between data records displayed on a query result page. Based on these observations we propose new techniques that can identify each data record individually, while ignoring noise items, such as navigation bars and adverts. We have implemented these techniques in a software prototype, rExtractor, and tested it using two datasets. Our experimental results show that our approach achieves significantly higher accuracy than previous approaches. Furthermore, it establishes the case for use of vision-based algorithms in the context of data extraction from web sites.
Resumo:
An environment has been created for the optimisation of aerofoil profiles with inclusion of small surface features. For TS wave dominated flows, the paper examines the consequences of the addition of a depression on the aerodynamic optimisation of an NLF aerofoil, and describes the geometry definition fidelity and optimisation algorithm employed in the development process. The variables that define the depression for this optimisation investigation have been fixed, however a preliminary study is presented demonstrating the sensitivity of the flow to the depression characteristics. Solutions to the optimisation problem are then presented using both gradient-based and genetic algorithm techniques, and for accurate representation of the inclusion of small surface perturbations it is concluded that a global optimisation method is required for this type of aerofoil optimisation task due to the nature of the response surface generated. When dealing with surface features, changes in the transition onset are likely to be of a non-linear nature so it is highly critical to have an optimisation algorithm that is robust, suggesting that for this framework, gradient-based methods alone are not suited.