47 resultados para Vehicles by motive power.
Resumo:
We report on the results of optical follow-up observations of the counterpart of the gamma-ray burst GRB 970508, starting 7 hr after the event. Multicolor U-, B-, V-, R-c-, and I-c-band observations were obtained during the first three consecutive nights. The counterpart was monitored regularly in R-c, until similar to 4 months after the burst. The light curve after the maximum follows a decline that can be fitted with a power law with exponent alpha = -1.141 +/- 0.014. Deviations from a smooth power-law decay are moderate (rms = 0.15 mag). We find no flattening of the light curve at late times. The optical afterglow fluence is a significant fraction, similar to 5%, of the GRB fluence. The optical energy distribution can be well represented by a power law, the slope of which changed at the time of the maximum (the spectrum became redder).
Resumo:
Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.
Resumo:
This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.
An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.
The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.
With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.
The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.
A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.
The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.
Resumo:
Modern wireless systems are expected to operate in multiple frequency bands and support diverse communications standards to provide the high volume and speed of data transmission. Today's major limitations of their performance are imposed by interference, spurious emission and noise generated by high-power carriers in antennas and passive components of the RF front-end. Passive Intermodulation (PIM), which causes the combinatorial frequency generation in the operational bands, presents a primary challenge to signal integrity, system efficacy and data throughput. © 2013 IEEE.
Resumo:
The accurate definition of the extreme wave loads which act on offshore structures represents a significant challenge for design engineers and even with decades of empirical data to base designs upon there are still failures attributed to wave loading. The environmental conditions which cause these loads are infrequent and highly non-linear which means that they are not well understood or simple to describe. If the structure is large enough to affect the incident wave significantly further non-linear effects can influence the loading. Moreover if the structure is floating and excited by the wave field then its responses, which are also likely to be highly non-linear, must be included in the analysis. This makes the description of the loading on such a structure difficult to determine and the design codes will often suggest employing various tools including small scale experiments, numerical and analytical methods, as well as empirical data if available.
Wave Energy Converters (WECs) are a new class of offshore structure which pose new design challenges, lacking the design codes and empirical data found in other industries. These machines are located in highly exposed and energetic sites, designed to be excited by the waves and will be expected to withstand extreme conditions over their 25 year design life. One such WEC is being developed by Aquamarine Power Ltd and is called Oyster. Oyster is a buoyant flap which is hinged close to the seabed, in water depths of 10 to 15m, piercing the water surface. The flap is driven back and forth by the action of the waves and this mechanical energy is then converted to electricity.
It has been identified in previous experiments that Oyster is not only subject to wave impacts but it occasionally slams into the water surface with high angular velocity. This slamming effect has been identified as an extreme load case and work is ongoing to describe it in terms of the pressure exerted on the outer skin and the transfer of this short duration impulsive load through various parts of the structure.
This paper describes a series of 40th scale experiments undertaken to investigate the pressure on the face of the flap during the slamming event. A vertical array of pressure sensors are used to measure the pressure exerted on the flap. Characteristics of the slam pressure such as the rise time, magnitude, spatial distribution and temporal evolution are revealed. Similarities are drawn between this slamming phenomenon and the classical water entry problems, such as ship hull slamming. With this similitude identified, common analytical tools are used to predict the slam pressure which is compared to that measured in the experiment.
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.Â
Resumo:
This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.
Resumo:
Understanding how US imperial strategy is sustained by tourism and militarism requires an account of how American soldiers learn to understand themselves in relation to a variety of marginalized others. This paper explores how the US Army’s ‘Ready and Resilient’ (R2) campaign constructs soldier / other relations by mobilizing off-duty time through the ‘Better Opportunities for Single Soldiers’ (BOSS) program. BOSS’s first two platforms of ‘Well-Being’ and ‘Community Service’ feed into the R2 agenda by producing highly-skilled leaders (who govern a disengaged rank and file) and benevolent humanitarians (who provide charity for abject civilians). When these dispositions are transposed into BOSS’s third platform of ‘Recreation and Leisure’, soldiers turn away from the goals of leadership and humanitarianism to reveal the privileged narcissism underscoring the R2 agenda. This self-focus is intensified by familiar power relations in the tourism industry as soldiers pursue self-improvement by commodifying, distancing and effacing local tourist workers. Using the BOSS program as a case study, this paper critically interrogates how the US Army is assimilating off-duty practices of tourism, leisure and recreation into the wider program of resilience training.
Resumo:
This article examines precarious employment in the context of the mushroom industry in Northern Ireland. Migrant workers engaged in mushroom picking were interviewed in the context of wider research investigating forced labour in Northern Ireland. The research found that, while the boundaries between exploitation and forced labour are complex and difficult to discern, there was some evidence of borderline forced labour, according to ILO definitions. However, workers found themselves on a ‘continuum of exploitation’, where initial engagement with the prospect of decent work was superseded by increasing endurance of exploitative practices, brought about by unequal power relationships with employers originating in immigration status. This is examined in the wider theoretical context of precarity, of which precarious employment comprises a part.
Resumo:
This paper considers a wirelessly powered wiretap channel, where an energy constrained multi-antenna information source, powered by a dedicated power beacon, communicates with a legitimate user in the presence of a passive eavesdropper. Based on a simple time-switching protocol where power transfer and information transmission are separated in time, we investigate two popular multi-antenna transmission schemes at the information source, namely maximum ratio transmission (MRT) and transmit antenna selection (TAS). Closed-form expressions are derived for the achievable secrecy outage probability and average secrecy rate for both schemes. In addition, simple approximations are obtained at the high signal-to-noise ratio (SNR) regime. Our results demonstrate that by exploiting the full knowledge of channel state information (CSI), we can achieve a better secrecy performance, e.g., with full CSI of the main channel, the system can achieve substantial secrecy diversity gain. On the other hand, without the CSI of the main channel, no diversity gain can be attained. Moreover, we show that the additional level of randomness induced by wireless power transfer does not affect the secrecy performance in the high SNR regime. Finally, our theoretical claims are validated by the numerical results.
Resumo:
Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
An energy storage system (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35kJ/7kW SMES (Superconducting Magnetic Energy Storage) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.