19 resultados para VOID FRACTION
Resumo:
This paper tests a simple market fraction asset pricing model with heterogeneous
agents. By selecting a set of structural parameters of the model through a systematic procedure, we show that the autocorrelations (of returns, absolute returns and squared returns) of the market fraction model share the same pattern as those of the DAX 30. By conducting econometric analysis via Monte Carlo simulations, we characterize these power-law behaviours and find that estimates of the power-law decay indices, the (FI)GARCH parameters, and the tail index of the selected market fraction model closely match those of the DAX 30. The results strongly support the explanatory power of the heterogeneous agent models.
Resumo:
AIMS: We report the outcomes of a large lung stereotactic ablative body radiotherapy (SABR) programme for primary non-small cell lung cancer (NSCLC) and pulmonary metastases. The primary study aim was to identify factors predictive for local control.
MATERIALS AND METHODS: In total, 311 pulmonary tumours in 254 patients were treated between 2008 and 2011 with SABR using 48-60 Gy in four to five fractions. Local, regional and distant failure data were collected prospectively, whereas other end points were collected retrospectively. Potential clinical and dosimetric predictors of local control were evaluated using univariate and multivariate analyses.
RESULTS: Of the 311 tumours, 240 were NSCLC and 71 were other histologies. The 2 year local control rate was 96% in stage I NSCLC, 76% in colorectal cancer (CRC) metastases and 91% in non-lung/non-CRC metastases. Predictors of better local control on multivariate analysis were non-CRC tumours and a larger proportion of the planning target volume (PTV) receiving ≥100% of the prescribed dose (higher PTV V100). Among the 45 CRC metastases, a higher PTV V100 and previous chemotherapy predicted for better local control.
CONCLUSIONS: Lung SABR of 48-60 Gy/four to five fractions resulted in high local control rates for all tumours except CRC metastases. Covering more of the PTV with the prescription dose (a higher PTV V100) also resulted in superior local control.
Resumo:
Context. Binary stellar evolution calculations predict thatChandrasekhar-mass carbon/oxygen white dwarfs (WDs) show a radiallyvarying profile for the composition with a carbon depleted core. Manyrecent multi-dimensional simulations of Type Ia supernovae (SNe Ia),however, assume the progenitor WD has a homogeneous chemicalcomposition.
Aims: In this work, we explore the impact ofdifferent initial carbon profiles of the progenitor WD on the explosionphase and on synthetic observables in the Chandrasekhar-mass delayeddetonation model. Spectra and light curves are compared to observationsto judge the validity of the model.
Methods: The explosion phaseis simulated using the finite volume supernova code Leafs, which isextended to treat different compositions of the progenitor WD. Thesynthetic observables are computed with the Monte Carlo radiativetransfer code Artis. Results: Differences in binding energies ofcarbon and oxygen lead to a lower nuclear energy release for carbondepleted material; thus, the burning fronts that develop are weaker andthe total nuclear energy release is smaller. For otherwise identicalconditions, carbon depleted models produce less 56Ni.Comparing different models with similar 56Ni yields showslower kinetic energies in the ejecta for carbon depleted models, butonly small differences in velocity distributions and line velocities inspectra. The light curve width-luminosity relation (WLR) obtained formodels with differing carbon depletion is roughly perpendicular to theobserved WLR, hence the carbon mass fraction is probably only asecondary parameter in the family of SNe Ia.
Tables 3 and 4 are available in electronic form at http://www.aanda.org