18 resultados para VEHICULAR NETWORKS
Resumo:
Al Rawi, Anas F., Emiliano Garcia-Palacios, Sonia Aissa, Charalampos C. Tsimenidis, and Bayan S. Sharif. "Dual-Diversity Combining for Constrained Resource Allocation and Throughput Maximization in OFDMA Networks." In Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp. 1-5. IEEE, 2013.
Resumo:
This study considers a dual-hop cognitive inter-vehicular relay-assisted communication system where all
communication links are non-line of sight ones and their fading is modelled by the double Rayleigh fading distribution.
Road-side relays (or access points) implementing the decode-and-forward relaying protocol are employed and one of
them is selected according to a predetermined policy to enable communication between vehicles. The performance of
the considered cognitive cooperative system is investigated for Kth best partial and full relay selection (RS) as well as
for two distinct fading scenarios. In the first scenario, all channels are double Rayleigh distributed. In the second
scenario, only the secondary source to relay and relay to destination channels are considered to be subject to double
Rayleigh fading whereas, channels between the secondary transmitters and the primary user are modelled by the
Rayleigh distribution. Exact and approximate expressions for the outage probability performance for all considered RS
policies and fading scenarios are presented. In addition to the analytical results, complementary computer simulated
performance evaluation results have been obtained by means of Monte Carlo simulations. The perfect match between
these two sets of results has verified the accuracy of the proposed mathematical analysis.
Resumo:
We consider a linear precoder design for an underlay cognitive radio multiple-input multiple-output broadcast channel, where the secondary system consisting of a secondary base-station (BS) and a group of secondary users (SUs) is allowed to share the same spectrum with the primary system. All the transceivers are equipped with multiple antennas, each of which has its own maximum power constraint. Assuming zero-forcing method to eliminate the multiuser interference, we study the sum rate maximization problem for the secondary system subject to both per-antenna power constraints at the secondary BS and the interference power constraints at the primary users. The problem of interest differs from the ones studied previously that often assumed a sum power constraint and/or single antenna employed at either both the primary and secondary receivers or the primary receivers. To develop an efficient numerical algorithm, we first invoke the rank relaxation method to transform the considered problem into a convex-concave problem based on a downlink-uplink result. We then propose a barrier interior-point method to solve the resulting saddle point problem. In particular, in each iteration of the proposed method we find the Newton step by solving a system of discrete-time Sylvester equations, which help reduce the complexity significantly, compared to the conventional method. Simulation results are provided to demonstrate fast convergence and effectiveness of the proposed algorithm.