171 resultados para VEGF secretion
Resumo:
Recent evidence indicates that the anti-angiogenic peptide endostatin may modulate some of the vasomodulatory effects of vascular endothelial growth factor (VEGF) in the retina, including reduction of blood retinal barrier function although it remains uncertain how endostatin promotes endothelial barrier properties. The current study has sought to examine how physiological levels of endostatin alters VEGF-induced inner BRB function using an in vitro model system and evaluation of occludin and ZO-1 regulatory responses. In addition, the ability of exogenous endostatin to regulate VEGF-mediated retinal vascular permeability in vivo was investigated.
Retinal microvascular endothelial cells (RMEC's) were exposed to various concentrations of endostatin. In parallel studies, RMEC monolayers were treated with vascular endothelial growth factor (VEGF165). Vasopermeability of RMEC monolayers and occludin expression were determined.
Blood retinal barrier integrity was quantified in mouse retina using Evans Blue assay following intravitreal delivery of VEGF165, endostatin or a VEGF/endostatin combination.
Endostatin increased the levels of expression of occludin whilst causing no significant change in FITC-dextran flux across the RMEC monolayer. Endostatin reversed the effects of VEGF165-enhanced permeability between microvascular endothelial cells and induced phosphorylation of occludin. Evans Blue leakage from retinas treated with VEGF was 2.0 fold higher than that of contra-lateral untreated eyes (P<0.05) while leakage of eyes from endostatin treated animals was unchanged. When eyes were injected with a combination of VEGF165 and endostatin there was a significant reduction in retinal vasopermeability when compared to VEGF-injected eyes (P<0.05).
We conclude that endostatin can promote integrity of the retinal endothelial barrier, possibly by preventing VEGF-mediated alteration of tight junction integrity. This suggests that endostatin may be of clinical benefit in ocular disorders where significant retinal vasopermeability changes are present.
Resumo:
The murine VEGF gene is alternatively transcribed to yield the VEGF120, VEGF164, and VEGF188 isoforms, which differ in their potential to bind to heparan sulfate and neuropilin-1 and to stimulate endothelial growth. Here, their role in retinal vascular development was studied in mice selectively expressing single isoforms. VEGF164/164 mice were normal, healthy, and had normal retinal angiogenesis. In contrast, VEGF120/120 mice exhibited severe defects in vascular outgrowth and patterning, whereas VEGF188/188 mice displayed normal venular outgrowth but impaired arterial development. It is noteworthy that neuropilin-1, a receptor for VEGF164, was predominantly expressed in retinal arterioles. These findings reveal distinct roles of the various VEGF isoforms in vascular patterning and arterial development in the retina.
Resumo:
The immunolocalization and gene expression of vascular endothelial growth factor (VEGF) and its cognate tyrosine kinase receptors, Flt-1 and KDR, has been studied in ocular melanomas and retinoblastomas using in situ hybridization and immunohistochemistry. Tumour-related alterations in VEGF/VEGF-receptor expression have also been examined in separate and uninvolved iris, retina and choroid of the same eyes. Although VEGF immunoreactivity in the normal retina was virtually absent, low-level VEGF expression was evident in the ganglion cell-bodies, Müller cells and in a distinct population of amacrine cells. VEGF gene expression was absent in the iris and choroid of normal eyes. In tumour-bearing eyes, high levels of VEGF protein and gene expression were observed within the vascularized regions of the tumours, while the adjacent retina and choroid showed increased VEGF levels when compared with normals. Flt-1 and KDR gene expression and immunolocalization occurred in VEGF-expressing ganglion, Müller and amacrine cells in normal eyes. Within the intra-ocular tumours, VEGF-receptor gene expression and protein was evident in the endothelial cells and also in cells close to the vessels, while in the adjacent retina, Flt-1 and KDR levels were elevated over normal, especially in the blood vessels. Flt-1 and KDR were both observed at elevated levels in the choroid and iris blood vessels. This study suggests that VEGF, Flt-1 and KDR are expressed by neural, glial and vascular elements within normal human retina. Intra-ocular tumours demonstrate a high level of VEGF and VEGF-receptor expression; within uninvolved, spatially separate retina, choroid and iris in the same eyes, expression is also elevated, especially within the vasculature. Retinal vascular endothelia may respond to high intra-ocular levels of VEGF by increasing expression of their VEGF receptors, a phenomenon which could have relevance to neoplasm-related ocular neovascularization.
Resumo:
Brevinins are peptides of 24 amino acid residues, originally isolated from the skin of the Oriental frog, Rana brevipoda porsa, by nature of their microbicidal activity against a wide range of Gram-positive and Gram-negative bacteria and against strains of pathogenic fungi. cDNA libraries were constructed from lyophilized skin secretion of three, unstudied species of Chinese frog, Odorrana schmackeri, Odorrana versabilis and Pelophylax plancyi fukienensis, using our recently developed technique. In this report, we describe the “shotgun” cloning of novel brevinins by means of 3'-RACE, using a “universal” degenerate primer directed towards a highly conserved nucleic acid sequence domain within the 5'-untranslated region of previously characterized frog skin peptide cDNAs. Novel brevinins, deduced from cloned cDNA open-reading frames, were subsequently identified as mature peptides in the same samples of respective species skin secretions. Bioinformatic analysis of both prepro-brevinin nucleic acid sequences and translated open-reading frame amino acid sequences revealed a highly conserved signal peptide domain and a hypervariable anti-microbial peptide-encoding domain. The experimental approach described here can thus rapidly provide robust structural data on skin anti-microbial peptides without harming the donor amphibians.
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Amphibian defensive skin secretions remain a largely untapped resource for the peptide biochemist with an interest in the identification, structural characterization, and precursor cDNA cloning of novel bioactive peptides. Here we report the isolation, structural characterization, functional profiling, and nucleotide sequence of precursor cDNA of a novel histamine-releasing heptadecapeptide, FIPVTLLALHKIKEKLN-amide, from the defensive skin secretion of the African running frog, Kassina senegalensis. This peptide was found to be a potent histamine secretagogue (EC[5][0]=6 µM; maximal release = 25 µM) in a rat peritoneal mast cell model system and was accordingly named kassinakinin S. The open-reading frame of the cDNA encoding prepro-kassinakinin S was found to consist of 71 amino acid residues containing a single copy of kassinakinin S and its glycyl residue amide donor at the C-terminus. Kassinakinin S can thus be added to the growing list of amphibian skin bioactive peptide prototypes.