173 resultados para Upper semi-continuity
Resumo:
We present FUV and UV spectroscopic observations of AD Leonis, with the aim of investigating opacity effects in the transition regions of late-type stars. The C III lines in FUSE spectra show significant opacity during both the quiescent and flaring states of AD Leonis, with up to 30% of the expected flux being lost during the latter. Other FUSE emission lines tested for opacity include those of O VI, while C IV, Si IV and N V transitions observed with STIS are also investigated. These lines only reveal modest amounts of opacity with losses during flaring of up to 20%. Optical depths have been calculated for homogeneous and inhomogeneous geometries, giving path lengths of approximate to 20 - 60 km and approximate to 10 - 30 km, respectively, under quiescent conditions. However path lengths derived during flaring are approximate to 2 - 3 times larger. These values are in excellent agreement with both estimates of the small-scale structure observed in the solar transition region, and path lengths derived previously for several other active late-type stars.
Resumo:
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.
Resumo:
In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.