37 resultados para Unsaturated bonds
Resumo:
Validation of a framework for unsaturated soil behaviour has frequently resulted in disagreement with basic propositions. A primary reason for this disparity is considered to be attributable to the anisotropic properties of the soil specimens tested as a result of preparation using one-dimensional compaction. As part of the work presented, comparison is made between tests on samples of unsaturated kaolin prepared at identical specific volumes and specific water volumes using isotropic compression and one-dimensional compression. The suctions in the samples were reduced to predefined values by wetting under low isotropic loading in a triaxial cell. The samples were then taken through various stress paths to failure, defined as the critical state strength, while the suctions were held constant. Stress path tests were also performed on samples without reducing the suction to predefined values. In the latter, constant water mass tests, the suctions were allowed to vary and were measured using a psychrometer. The results of the tests at critical state are compared with the propositions of Wheeler and Sivakumar. The shear strengths of samples with isotropic previous history are shown to be significantly greater than those of samples with one-dimensional stress history when plotted against the mean net stress. The normal compression lines, critical state lines and yield characteristics are also shown to be significantly influenced by the previous stress history and are shown to be different for isotropically and one-dimensionally prepared samples.
Resumo:
This research investigated seepage flow through leaky dams using the well known finite-element method. Different areas, locations, and hydraulic conductivities of leaks were examined. An area of leak, equal to 4.4% of the core area, increased the seepage flow through the dam to be about 9.5 times the seepage flow through tight (nonleaky) core. This happened for a dam having a downstream horizontal drainage filter. When the drainage filter did not exist, the increase of flow because of the same area of leak was about seven times the flow through a tight core. When the leak existed at the centerline of the core in the out-of-plane direction, its impact was slightly greater than when it existed at the edge of the core. Moreover, as the location of the leak moved up vertically, its impact was observed to be less. It was also observed that when the leak existed in curtain wall driven into underneath the dam, its impact was not significant compared with the case when it existed in the core.
Experimental observations of the stress regime in unsaturated compacted clay when laterally confined
Resumo:
Construction processes often involve reformation of the landscape, which will inevitably encompass compaction of artificially placed soils. A common application of fill materials is their use as backfill in many engineering applications, for example behind a retaining wall. The post-construction behaviour of clay fills is complex with respect to stresses and deformation when the fills become saturated over time. Heavily compacted fills swells significantly more than the lightly compacted fills. This will produce enhanced lateral stresses if the fill is laterally restrained. The work presented in this paper examines how the stress regime in unsaturated clay fills changes with wetting under laterally restrained conditions. Specimens of compacted kaolin, with different initial conditions, were wetted to various values of suction under zero lateral strain at constant net overburden pressure which allowed the concept of K 0 (the ratio between the net horizontal stress and the net vertical stress) to be examined. Tests were also carried out to examine the traditional concept of the earth pressure coefficient ‘at rest' under loading and unloading and its likely effects on the stress–strain properties. The results have shown that the stress regime (i.e. the lateral stress) changes significantly during wetting under laterally restrained conditions. The magnitude of the change is affected by the initial condition of the soil. The results have also indicated that the earth pressure coefficient ‘at rest' during loading (under the normally consolidated condition) is unaffected by suction and such loading conditions inevitably lead to the development of anisotropic stress–strain properties
Resumo:
Data from a series of controlled suction triaxial tests on samples of compacted speswhite kaolin were used in the development of an elasto–plastic critical state framework for unsaturated soil. The framework is defined in terms of four state variables: mean net stress, deviator stress, suction and specific volume. Included within the proposed framework are an isotropic normal compression hyperline, a critical state hyperline and a state boundary hypersurface. For states that lie inside the state boundary hypersurface the soil behaviour is assumed to be elastic, with movement over the state boundary hypersurface corresponding to expansion of a yield surface in stress space. The pattern of swelling and collapse observed during wetting, the elastic–plastic compression behaviour during isotropic loading and the increase of shear strength with suction were all related to the shape of the yield surface and the hardening law defined by the form of the state boundary. By assuming that constant–suction cross–sections of the yield surface were elliptical it was possible to predict test paths for different types of triaxial shear test that showed good agreement with observed behaviour. The development of shear strain was also predicted with reasonable success, by assuming an associated flow rule.
Resumo:
The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour during wetting and isotropic loading has been investigated by conducting controlled-suction tests on samples of unsaturated compacted speswhite kaolin. The results are interpreted within the context of an elastoplastic framework for unsaturated soils, to examine which compaction-induced effects can be explained simply by variation in the initial state of the soil and which require that soils produced by different compaction procedures are modelled as fundamentally different materials. The compaction pressure influences initial state, by affecting the initial position of the yield surface, but it also influences, to a limited degree, the positions of the normal compression lines for different values of suction. The compaction water content influences the initial suction, but also has a significant influence (greater than does compaction pressure) on the positions of the normal compression lines. A change from static to dynamic compaction has no significant effect on subsequent behaviour
Resumo:
The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour was investigated by conducting controlled-suction triaxial tests on samples of unsaturated compacted speswhite kaolin. Compaction pressure influences initial state, by determining the initial position of the yield surface, thus affecting, among other things, the shape of stress–strain curves during shearing. Compaction pressure also influences, to a limited degree, the positions of the normal compression lines for different values of suction, but it has no effect on critical state relationships. The effect of compaction pressure can probably be modelled solely in terms of initial state if an anisotropic elastoplastic model incorporating rotational hardening is employed, whereas the parameters defining the slopes and intercepts of the normal compression lines for different values of suction require adjustment with variation of compaction pressure if a conventional isotropic hardening elastoplastic model is employed. Compaction water content influences the initial suction, but also has a substantial influence on normal compression lines and a noticeable effect on the volumetric behaviour at critical states. It is likely that soil samples compacted at different water contents will have to be modelled as different materials, irrespective of whether an isotropic or anisotropic hardening elastoplastic model is employed. A change from static to dynamic compaction has no significant effect on subsequent behaviour.
Resumo:
Unsaturated soils constitute a large proportion of the foundation materials supporting infrastructure throughout the world and they are subject to various loading conditions. This paper describes the development of a simple system for testing unsaturated soils under repeated loading. The equipment was comprised of a modified triaxial cell with hydraulic loading system, hall-effect transducers for on-sample strain measurements, and thermocouple psychrometer for suction measurements. A number of undrained monotonic and repeated loading triaxial tests were performed on compacted samples of kaolin clay in order to attest the newly developed system. The results yielded some useful information on the resilient modulus and permanent deformation of a soil when subjected to repeated loading. There is some difference between the failure deviator stress of samples subjected to repeated and monotonic loading, though repeated loading continued to result in a significant permanent deformation. This paper is aimed at demonstrating the key features of the equipment using preliminary data generated as part of the on-going research.
Resumo:
Synthesis and Chemistry of simple tetracyanoalkanes is well studied. We performed tetracyanoethylation of unsaturated ketones with an active double bond in alpha-position. The reaction of tetracyanoethylene with alpha,beta-unsaturated ketones may result in four probable products depending on the character of substituents.
Resumo:
The new platinum complex [PtCl[C6H2(CH(2)NMe(2))(2) -2,6-(C=CH)-4)] exhibits a polymeric linear -C=CH ... ClPt-hydrogen-bonded structure in the solid state.
Resumo:
While a significant number of geotechnical structures are subjected to static loading, many, such as avement subgrade, also are subjected to cyclic or dynamic loading. While the performance of saturated soils under repeated, cyclic or dynamic loading conditions is still a topic of research, similar interests are growing when the soilcondition is unsaturated. This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed which incorporates small strain measurements using Hall-effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and substantially reduced with further increase in water content. Key Words: suction, resilient modulus, subgrade, repeated loading, small strain measurements, compaction.
Resumo:
Drawing on recently declassified documents from the archive of the Foreign Ministry of the People’s Republic of China (PRC), this article looks at China’s relationship with North Korea during and immediately after the Korean War. Although previous scholarship has touched on PRC–North Korean military ties during the war, this article is the first in-depth analysis of issues that are less well understood, notably China’s efforts to cope with a huge influx of refugees from North Korea, the PRC’s economic assistance during the war and in the early postwar reconstruction, and Chinese educational and ideological support for North Korean professionals and party cadres. The article shows that the extensive military coordination between Beijing and Pyongyang was only one way in which the war brought North Korea and the PRC into a closer relationship
Resumo:
Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and
bone1–6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress
favourably altersmaterial properties. A few mechanosensitive polymers with this property have been developed8–14; but their active response is mediated through non-covalent processes, which may
limit the extent to which properties can be modified and the longterm stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such forceinduced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.