37 resultados para Unobserved-component model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion species are considered of opposite polarity and same mass, in addition to a massive charged background species, which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay between the gyroscopic (Larmor) frequency ?c and the (intrinsic) plasma rotation frequency O0. By employing a multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric analysis is carried out, as regards the effect of the dusty plasma composition (background number density), species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term, which in fact diverges at ?c ? ±2O0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion. The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T- ˜ T+) “pure” (n- ˜ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order nonlinear theory. A modified ZK equation is derived and analyzed. Our results are of relevance in pair-ion (fullerene) experiments and also potentially in astrophysical environments, e.g. in pulsars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed a meta-analysis to estimate the magnitude of C3 gene polymorphism effects, and their possible mode of action, on age-related macular degeneration (AMD). The meta-analysis included 16 studies for rs2230199 and 7 studies for rs1047286. Data extraction and risk of bias assessments were performed in duplicate, and heterogeneity and publication bias were explored. There was moderate evidence for association between both polymorphisms and AMD in individuals of European descent. For rs2230199, patients with CG and GG genotypes were 1.44 (95% CI: 1.33 – 1.56) and 1.88 (95% CI: 1.59 – 2.23) times more likely to have AMD than patients with CC genotype. For rs1047286, those with GA and AA genotypes had 1.27 (95% CI: 1.15 – 1.41) and 1.70 (95% CI: 1.27 – 2.11) times higher risk of AMD than those with GG genotypes. These gene effects suggested an additive model. The population attributable risks for the GG/GC and AA/GA genotypes are approximately 5-10%. Stratification of studies on the basis of ethnicity indicates that these variants are very infrequent in Asian populations and the significance of the effect observed is based largely on the high frequency of these variants within individuals of European descent. This meta-analysis supports the association between C3 and AMD and provides a robust estimate of the genetic risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose:
To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies.

Materials and Methods:
A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields.

Results:
The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses.

Conclusions:
The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of glycoconjugates is remarkably conserved in all types of cells since the biochemical reactions involved exhibit similar characteristics, which can be summarized as follows: (a) the saccharide moiety is formed as a lipid-linked, membrane-associated glycan; (b) the lipid component in most cases is a polyisoprenoid phosphate; (c) the assembly of the lipid-linked saccharide intermediate depends on reactions taking place at both sides of the cell membrane, which requires the obligatory transmembrane movement of amphipathic molecules across the lipid bilayer. These general characteristics are present in the biosynthesis of the O-antigen component of the bacterial lipopolysaccharide, which serves as a model system to investigate the molecular and mechanistic basis of glycoconjugate synthesis, as summarized in this mini-review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate a simple and novel illumination model that can be used for illumination invariant facial recognition. This model requires no prior knowledge of the illumination conditions and can be used when there is only a single training image per-person. The proposed illumination model separates the effects of illumination over a small area of the face into two components; an additive component modelling the mean illumination and a multiplicative component, modelling the variance within the facial area. Illumination invariant facial recognition is performed in a piecewise manner, by splitting the face image into blocks, then normalizing the illumination within each block based on the new lighting model. The assumptions underlying this novel lighting model have been verified on the YaleB face database. We show that magnitude 2D Fourier features can be used as robust facial descriptors within the new lighting model. Using only a single training image per-person, our new method achieves high (in most cases 100%) identification accuracy on the YaleB, extended YaleB and CMU-PIE face databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a hybrid distribution function was proposed to describe a plasma species with an enhanced superthermal component. This combines a Cairns-type "nonthermal" form with the Tsallis theory for nonextensive thermodynamics. Using this alternative model, the propagation of arbitrary amplitude ion acoustic solitary waves in a two-component plasma is investigated. From a careful study of the distribution function it is found that the model itself is valid only for a very restricted range in the q-nonextensive parameter and the nonthermality parameter, a. Solitary waves, the amplitude and nature of which depend sensitively on both q and a, can exist within a narrow range of allowable Mach numbers. Both positive and negative potential structures are found, and coexistence may occur. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new statistical signal reception model for shadowed body-centric communications channels. In this model, the potential clustering of multipath components is considered alongside the presence of elective dominant signal components. As typically occurs in body-centric communications channels, the dominant or line-of-sight (LOS) components are shadowed by body matter situated in the path trajectory. This situation may be further exacerbated due to physiological and biomechanical movements of the body. In the proposed model, the resultant dominant component which is formed by the phasor addition of these leading contributions is assumed to follow a lognormal distribution. A wide range of measured and simulated shadowed body-centric channels considering on-body, off-body and body-to-body communications are used to validate the model. During the course of the validation experiments, it was found that, even for environments devoid of multipath or specular reflections generated by the local surroundings, a noticeable resultant dominant component can still exist in body-centric channels where the user's body shadows the direct LOS signal path between the transmitter and the receiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ - μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami- m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ - μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic principal component analysis (PCA) methods are presented in this paper for reliable islanding detection for power systems with significant penetration of distributed generations (DGs), where synchrophasors recorded by Phasor Measurement Units (PMUs) are used for system monitoring. Existing islanding detection methods such as Rate-of-change-of frequency (ROCOF) and Vector Shift are fast for processing local information, however with the growth in installed capacity of DGs, they suffer from several drawbacks. Incumbent genset islanding detection cannot distinguish a system wide disturbance from an islanding event, leading to mal-operation. The problem is even more significant when the grid does not have sufficient inertia to limit frequency divergences in the system fault/stress due to the high penetration of DGs. To tackle such problems, this paper introduces PCA methods for islanding detection. Simple control chart is established for intuitive visualization of the transients. A Recursive PCA (RPCA) scheme is proposed as a reliable extension of the PCA method to reduce the false alarms for time-varying process. To further reduce the computational burden, the approximate linear dependence condition (ALDC) errors are calculated to update the associated PCA model. The proposed PCA and RPCA methods are verified by detecting abnormal transients occurring in the UK utility network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events; however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly
auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents multilevel models that utilize the Coxian phase-type distribution in order to be able to include a survival component in the model. The approach is demonstrated by modeling patient length of stay and in-hospital mortality in geriatric wards in Italy. The multilevel model is used to provide a means of controlling for the existence of possible intra-ward correlations, which may make patients within a hospital more alike in terms of experienced outcome than patients coming from different hospitals, everything else being equal. Within this multilevel model we introduce the use of the Coxian phase-type distribution to create a covariate that represents patient length of stay or stage (of hospital care). Results demonstrate that the use of the multilevel model for representing the in-patient mortality is successful and further enhanced by the inclusion of the Coxian phase-type distribution variable (stage covariate).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinopathy of prematurity (ROP) is a rare disease in which retinal blood vessels of premature infants fail to develop normally, and is one of the major causes of childhood blindness throughout the world. The Discrete Conditional Phase-type (DC-Ph) model consists of two components, the conditional component measuring the inter-relationships between covariates and the survival component which models the survival distribution using a Coxian phase-type distribution. This paper expands the DC-Ph models by introducing a support vector machine (SVM), in the role of the conditional component. The SVM is capable of classifying multiple outcomes and is used to identify the infant's risk of developing ROP. Class imbalance makes predicting rare events difficult. A new class decomposition technique, which deals with the problem of multiclass imbalance, is introduced. Based on the SVM classification, the length of stay in the neonatal ward is modelled using a 5, 8 or 9 phase Coxian distribution.