45 resultados para Ultraviolet and visible spectra of polyacrylonitrile
Resumo:
The photonic efficiencies of films of Evonik (formerly Degussa) P25 TiO2 and carbon-modified TiO2 Kronos VLP 7000 samples are reported as a function of excitation wavelength (300–430 nm; FWHM ∼ 7.5 nm), i.e. the action spectra, for the degradation of stearic acid, a model organic for the photocatalytic destruction of solid surface organic pollutants. For each of these semiconductor photocatalysts, at 365 nm (FWHM = 18 nm), the dependence of the rate of degradation of stearic acid, upon the irradiance, I, is determined and the rate is found to be proportional to I0.65 and I0.82 for P25 and Kronos titania, respectively. Assuming this relationship holds at all wavelengths, the action spectra for two different semiconductor photocatalysts is modified by plotting, (RSA (rate of stearic acid destruction, units: molecules cm−2 s−1)/Iθ) vs. wavelength of excitation (λexcit), and both differ noticeably from those of the original (unmodified) action spectra, which are plots of (RSA/I = photonic efficiency, ξ) vs. λexcit. The shape of the modified action spectrum for P25 TiO2 is consistent with that reported by others for other organic mineralisation reactions and correlates well with diffuse reflectance data for P25 TiO2 (Kubelka–Munk plot), although there is some evidence that the active phase, in the photodegradation of stearic acid, is the anatase form present in P25. The unmodified and modified action spectra of the beige Kronos VLP 7000 TiO2 compound exhibits little or no activity in the visible i.e. (λexcit > 400 nm) and a peak at 350 nm. The Kronos powder contains a yellow/brown conjugated, extractable, organic sensitiser which has been identified by others as the species responsible for its reported photocatalytic visible light activity. But, irradiation of the Kronos powder film, with and without a stearic acid coating, in air, using UVA or visible light, bleaches rapidly (<60 min) most, if not all, of the little colour exhibited by the original Kronos powder. The photobleached form of the Kronos has a similar action spectrum to that of the unbleached form, which, in turn, appears very similar to that of P25 titania, at wavelengths >350 nm. It is proposed that the difference between the Kronos and P25 powder films at wavelengths <350 nm is due to a photodegradation-resistant, previously unidentified (but extractable using MeCN) UV-absorbing organic species in the former which screens the titania particles at these lower wavelengths. The implications of these observations are discussed briefly.
Resumo:
Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4PJ' intercombination multiplet of Si II at ~ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2DJ ~ transitions at ~1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.
Resumo:
Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.
Resumo:
The absorption-line spectra of early B-type supergiants show significant broadening that implies that an additional broadening mechanism (characterized here as `macroturbulence') is present in addition to rotational broadening. Using high-resolution spectra with signal-to-noise ratios of typically 500, we have attempted to quantify the relative contributions of rotation and macroturbulence, but even with data of this quality significant problems were encountered. However, for all our targets, a model where macroturbulence dominates and rotation is negligible is acceptable; the reverse scenario leads to poor agreement between theory and observation. Additionally, there is marginal evidence for the degree of broadening increasing with line strength, possibly a result of the stronger lines being formed higher in the atmosphere. Acceptable values of the projected rotational velocity are normally less than or equal to 50 km s-1, which may also be a typical upper limit for the rotational velocity. Our best estimates for the projected rotational velocity are typically 10-20 km s-1 and hence compatible with this limit. These values are compared with those predicted by single star evolutionary models, which are initially rapidly rotating. It is concluded that either these models underestimate the rate of rotational breaking or some of the targets may be evolving through a blue loop or are binaries.
Resumo:
A semi-phenomenological molecular model is presented, which is capable of describing with the use of analytical formulae, the wideband dielectric(1) and far-infrared spectra of ordinary and heavy water. In the model the vector of a dipole moment is presented as a sum of two components. The absolute value of the first one is constant; the second one changes harmonically with time. The key aspect of this work is consideration of FIR spectra due to the second component. In the context of the modified hybrid model presented in the work, reorientation of the dipoles in the rectangular potential well is considered, as a result of which the librational (near 700 cm (-1)) and translational (near 200 cm (-1)) absorption bands and the microwave Debye relaxation spectrum arise. It is shown that the time-dependent part of a dipole moment contributes most to the translational band, the relevant mechanism is taken to be stretching vibration of the H-bonded molecules. Previous linear-response molecular models were unsuccessful in describing this band (in heavy water) in terms of the complex dielectric permittivity. The spatial and time scales characteristic of water are estimated. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The influence of ageing and cooking on the Raman spectrum of porcine longissimus dorsi was investigated. The rich information contained in the Raman spectrum was highlighted, with numerous changes attributed to changes in the environment and conformations of the myofibrillar proteins.
Resumo:
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas.
Methods: Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities.
Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å.