35 resultados para Tropical plant species


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diet of the Irish hare Lepus timidus hibernicus was investigated in Northern Ireland. Faecal pellets were collected at regular intervals from three contrasting study sites and from a number of randomly selected sites from known land classes. Microhistological techniques were employed to analyse the pellets. Grass species occurred in high percentage frequencies in all samples of faecal pellets and a wide variety of plant species were represented (up to 26 species in one study site). In a stratified, random survey of the presence of hares, areas of lowland intensive agriculture had fewer positive records than expected. It is contended that L. t. hibernicus may not be able to sustain viable populations in areas of intensive agriculture, which are almost exclusively composed of ryegrass Lolium spp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seasonal selection of food by pale-bellied Brent geese and wigeon on Strangford Lough was analysed with respect to nutritive quality. Both species selected food plants to maximise nutrition. In wigeon, food selection may also have been affected by the intolerance of this species to disturbance, forcing many individuals to feed in secondary habitats. Minerals do not seem to affect food selection, with most plant species in the diet providing a sufficiently balanced complement of nutrients. It is concluded that interspecific differences in food selection and reaction to human disturbance may have contributed to the decline in numbers of wigeon in Strangford Lough while numbers of Brent geese have been maintained. Some implications are discussed and recommendations for management are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of burning and grazing on plant, ground beetle and spider species was investigated experimentally in stands of varying ages (burnt in 1982 and 1988 and unburnt plots) on an area of heather moorland in County Antrim, north-east Ireland. Burning initiated complex succession pathways which appear to have characteristic plant and invertebrate species associations. Removal of Calluna dominance initiated a period of high plant species diversity. Investigation of initial post-fire regeneration suggested that the frequency of occurrence of plant species changed over time and was affected by grazing. Grouping of species by the position of their renewal bud, i.e. their life-form, did not account for all observed interspecific variation. The dominant species after burning were Eriophorum vaginatum, E. angustifolium and Vaccinium myrtillus. Studies of vegetation canopy structure showed that, even with the exclusion of the main grazing herbivores, Calluna will not re-establish itself as the dominant species until several years after burning. The ground beetle Nebria salina was trapped more often on plots burnt in 1988 than on unburnt plots or those burnt in 1982. In comparison, Pterostichus niger and Carabus granulatus were trapped in greater numbers on plots burnt in 1982 than on unburnt plots and plots burnt in 1988. The large species Carabus problematicus and Carabus glabratus were trapped in greater numbers on unburnt plots. Similarly, more of the spiders Ceratinella brevipes and Centromerita concinna were trapped on the plots burnt in 1982. In comparison, Lepthyphantes zimmermanni and Robertus lividus were trapped more often on unburnt plots than on plots burnt in 1982 and 1988. Results are discussed with respect to the importance of the continuation of traditional heathland management practices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycorrhizal fungi form complex communities in the root systems of most plant species and are thought to be important in terrestrial ecosystem sustainability. We have reviewed the literature relating to the influence of the major forms of anthropogenic pollution on the structure and dynamics of mycorrhizal fungal communities. All forms of pollution have been reported to alter the structure of below-ground communities of mycorrhizal fungi to some degree, although the extent to which such changes will be sustained in the longer term is at present not clear. The major limitation to predicting the consequences of pollution-mediated changes in mycorrhizal fungal communities to terrestrial habitats is our limited understanding of the functional significance of mycorrhizal fungal diversity. While this is identified as a priority area for future research, it is suggested that, in the absence of such data, an understanding of pollution-mediated changes in mycorrhizal mycelial systems in soil may provide useful indicators for sustainability of mycorrhizal systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a method to extract and separate phytochelatins (PCs)-metal(loid) complexes using parallel metal(loid)-specific (inductively coupled plasma-mass spectrometry) and organic-specific (electrospray ionization-mass spectrometry) detection systems-and use it here to ascertain the nature of arsenic (As)-PC complexes in plant extracts. This study is the first unequivocal report, to our knowledge, of PC complex coordination chemistry in plant extracts for any metal or metalloid ion. The As-tolerant grass Holcus lanatus and the As hyperaccumulator Pteris cretica were used as model plants. In an in vitro experiment using a mixture of reduced glutathione (GS), PC(2), and PC(3), As preferred the formation of the arsenite [As((III))]-PC(3) complex over GS-As((III))-PC(2), As((III))-(GS)(3), As((III))-PC(2), or As((III))-(PC(2))(2) (GS: glutathione bound to arsenic via sulphur of cysteine). In H. lanatus, the As((III))-PC(3) complex was the dominant complex, although reduced glutathione, PC(2), and PC(3) were found in the extract. P. cretica only synthesizes PC(2) and forms dominantly the GS-As((III))-PC(2) complex. This is the first evidence, to our knowledge, for the existence of mixed glutathione-PC-metal(loid) complexes in plant tissues or in vitro. In both plant species, As is dominantly in non-bound inorganic forms, with 13% being present in PC complexes for H. lanatus and 1% in P. cretica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenate tolerance is conferred by suppression of the high-affinity phosphate/arsenate uptake system, which greatly reduces arsenate influx in a number of higher plant species. Despite this suppressed uptake, arsenate-tolerant plants can still accumulate high levels of As over their lifetime, suggesting that constitutive detoxification mechanisms may be required. Phytochelatins are thiol-rich peptides, whose production is induced by a range of metals and metalloids including arsenate. This study provides evidence for the role of phytochelatins in the detoxification of arsenate in arsenate-tolerant Holcus lanatus. Elevated levels of phytochelatin were measured in plants with a range of tolerance to arsenate at equivalent levels of arsenate stress, measured as inhibition of root growth. The results suggest that arsenate tolerance in H. lanatus requires both adaptive suppression of the high-affinity phosphate uptake system and constitutive phytochelatin production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil aggregation is a principal ecosystem process mediated by soil biota. Collembola and arbuscular mycorrhizal (AM) fungi are important groups in the soil, and can interact in various ways. Few studies have examined collembola effects on soil aggregation, while many have quantified AM effects. Here, we asked if collembola have any effect on soil aggregation, and if they alter AM fungi-mediated effects on soil aggregation.

We carried out a factorial greenhouse study, manipulating the presence of both collembola and AM fungi, using two different plant species, Sorghum vulgare and Daucus carota. We measured root length and biomass, AMF (and non-AMF) soil hyphal length, root colonization, and collembolan populations, and quantified water stable soil aggregates (WSA) in four size classes.

Soil exposed to growth of AMF hyphae and collembola individually had higher WSA than control treatments. Moreover, the interaction effects between AMF and collembola were significant, with nonadditive increases in the combined application compared to the single treatments.

Our findings show that collembola can play a crucial role in maintaining ecological sustainability through promoting soil aggregation, and point to the importance of considering organism interactions in understanding formation of soil structure. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants. We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil food webs are characterised by complex direct and indirect effects among the organisms. Consumption of microorganisms by soil animals is considered as an important factor that contributes to the stability of communities, though cascading effects within the food web can be difficult to detect. In a greenhouse experiment, an addition of a high number the fungal feeding collembola Folsomia quadrioculata was applied to grassland soil food webs in monocultures of three plant species: Plantago lanceolato (forb), Lotus corniculatus (legume) and Holcus lanatus (grass). The abundance of microorganisms, determined as the abundances of phospholipid fatty acids (PLFAs) and the abundances of resident invertebrates, nematodes and collembolans, did not change due to the addition of E quadrioculata. Trophic positions of collembolans were determined by analyses of natural abundances of N-15 stable isotopes. The use of food resources by microorganisms and collembolans was determined by C-13 analysis of microbial PLFAs and solid samples of collembolans. delta C-13 values of the resident collembola Folsomia fimetaria were lower in the presence of E quadrioculata than in the control food webs indicating a use of more depleted C-13 food resources by E fimetaria. The delta N-15 values of E fimetaria did not change at the addition of E quadrioculata thus no change of trophic levels was detected. The switch of E fimetaria to a different food resource could be due to indirect interactions in the food web as the two collembolan species were positioned on different trophic positions, according to different delta N-15 values. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transfer of resistance to the phosphorothioamidate herbicide, amiprophosmethyl (APM), from the P-tubulin mutant of Nicotiana plumbaginifolia to the interspecific N, plumbaginifolia (+) N, sylvestris is and to the intertribal N, plumbaginifolia (+) Atropa belladonna somatic hybrids has been demonstrated. Transfer to the recipient species was accomplished by: (1) symmetric hybridisation and (2) asymmetric hybridisation using gamma-irradiation of donor protoplasts. Cytogenetic analysis confirmed the hybrid origin of the hybrids obtained. It was established that most of them typically inherited no more than three donor chromosomes, although it was possible to obtain symmetric hybrids in the case of symmetric fusion. Immunofluorescent microscopy analysis has shown that protoplasts of the mutant, and of the N. plumbagini-folia (+) N. sylvestris and N. plumbaginifolia (+) A. belladonna hybrids, retained the normal structure of interphase microtubule (MT) arrays and mitotic figures after treatment with 5 mu M APM, whereas MTs of protoplasts of the recipients were destroyed under these conditions. It was also shown that hybrid clones contained an altered beta-tubulin isoform originating from the N. plumbaginifolia mutant. The selected hybrid clones were characterised by cross-resistance to trifluralin, a dinitroaniline herbicide with the same mode of anti-MT action. Some of the somatic hybrids which could flower were fertile. It was established that seeds of some fertile hybrids were able to germinate in the presence of 5 mu M APM. The results obtained thus support the conclusion that the technique of somatic hybridisation, especially asymmetric fusion, can be used to transfer APM resistance from the N. plumbaginifolia mutant to different (related and remote) plant species of the Solanaceae, including important crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ribosome biogenesis is a fundamental cellular process which is tightly regulated in normal cells. A number of tumour suppressors and oncogenes could affect the production of ribosomes at different levels and an upregulation could lead to increased protein biosynthesis which is one of the characteristic features of all cancer cells. Ribosome biogenesis is a very complex process which requires coordinated transcription by all three nucleolar polymerases and the first event in this process is synthesis of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I). Importantly, recent data has pictured rRNA transcription as a key regulator of whole ribosome biogenesis and therefore makes it a valid and very attractive target for anticancer therapy, as well as a perspective biomarker. However, at the moment there is only one known specific inhibitor of Pol I transcription (at stage one of clinical trials) and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. We have recently discovered that antitumor alkaloid ellipticine (isolated in 1959 from the plant species Ochrosia) is a potent inhibitor of Pol I transcription (both in vitro and in vivo). Ellipticine and its derivatives are known as efficient topoisomerase II inhibitors and inhibitors of some kinases, however we have shown that these inhibitory activities and the ability of ellipticine to repress Pol I activity are unrelated. Moreover, our preliminary data suggests that ellipticine specifically targets Pol I transcription and it has no effect on transcription by Pol II and Pol III at the same time scale. The possible mechanisms of inhibition of Pol I transcription by ellipticines will be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim
It is widely acknowledged that species distributions result from a variety of biotic and abiotic factors operating at different spatial scales. Here, we aimed to (1) determine the extent to which global climate niche models (CNMs) can be improved by the addition of fine-scale regional data; (2) examine climatic and environmental factors influencing the range of 15 invasive aquatic plant species; and (3) provide a case study for the use of such models in invasion management on an island.

Location
Global, with a case study of species invasions in Ireland.

Methods
Climate niche models of global extent (including climate only) and regional environmental niche models (with additional factors such as human influence, land use and soil characteristics) were generated using maxent for 15 invasive aquatic plants. The performance of these models within the invaded range of the study species in Ireland was assessed, and potential hotspots of invasion suitability were determined. Models were projected forward up to 2080 based on two climate scenarios.

Results
While climate variables are important in defining the global range of species, factors related to land use and nutrient level were of greater importance in regional projections. Global climatic models were significantly improved at the island scale by the addition of fine-scale environmental variables (area under the curve values increased by 0.18 and true skill statistic values by 0.36), and projected ranges decreased from an average of 86% to 36% of the island.

Main conclusions
Refining CNMs with regional data on land use, human influence and landscape may have a substantial impact on predictive capacity, providing greater value for prioritization of conservation management at subregional or local scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary

1.While plant–fungal interactions are important determinants of plant community assembly and ecosystem functioning, the processes underlying fungal community composition are poorly understood.
2.Here, we studied for the first time the root-associated eumycotan communities in a set of co-occurring plant species of varying relatedness in a species-rich, semi-arid grassland in Germany. The study system provides an opportunity to evaluate the importance of host plants and gradients in soil type and landscape structure as drivers of fungal community structure on a relevant spatial scale. We used 454 pyrosequencing of the fungal internal transcribed spacer region to analyse root-associated eumycotan communities of 25 species within the Asteraceae, which were sampled at different locations within a soil type gradient. We partitioned the variance accounted for by three predictors (host plant phylogeny, spatial distribution and soil type) to quantify their relative roles in determining fungal community composition and used null model analyses to determine whether community composition was influenced by biotic interactions among the fungi.
3.We found a high fungal diversity (156 816 sequences clustered in 1100 operational taxonomic units (OTUs)). Most OTUs belonged to the phylum Ascomycota (35.8%); the most abundant phylotype best-matched Phialophora mustea. Basidiomycota were represented by 18.3%, with Sebacina as most abundant genus. The three predictors explained 30% of variation in the community structure of root-associated fungi, with host plant phylogeny being the most important variance component. Null model analysis suggested that many fungal taxa co-occurred less often than expected by chance, which demonstrates spatial segregation and indicates that negative interactions may prevail in the assembly of fungal communities.
4.Synthesis. The results show that the phylogenetic relationship of host plants is the most important predictor of root-associated fungal community assembly, indicating that fungal colonization of host plants might be facilitated by certain plant traits that may be shared among closely related plant species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synopsis
Objectives

To exploit the microbial ecology of bacterial metabolite production and, specifically, to: (i) evaluate the potential use of the pigments prodigiosin and violacein as additives to commercial sunscreens for protection of human skin, and (ii) determine antioxidant and antimicrobial activities (against pathogenic bacteria) for these two pigments.

Methods
Prodigiosin and violacein were used to supplement extracts of Aloe vera leaf and Cucumis sativus (cucumber) fruit which are known to have photoprotective activity, as well as some commercial sunscreen preparations. For each, sunscreen protection factors (SPFs) were determined spectrophotometrically. Assays for antimicrobial activity were carried out using 96-well plates to quantify growth inhibition of Staphylococcus aureus and Escherichia coli.
Results
For the plant extracts, SPFs were increased by an order of magnitude (i.e. up to ~3.5) and those for the commercial sunscreens increased by 10–22% (for 4% w/w violacein) and 20–65% (for 4% w/w prodigiosin). The antioxidant activities of prodigiosin and violacein were approximately 30% and 20% those of ascorbic acid (a well-characterized, potent antioxidant). Violacein inhibited S. aureus (IC506.99 ± 0.146 μM) but not E. coli, whereas prodigiosin was effective against both of these bacteria (IC50 values were 0.68 ± 0.06 μM and 0.53 ± 0.03 μM, respectively).

Conclusion
The bacterial pigments prodigiosin and violacein exhibited antioxidant and antimicrobial activities and were able to increase the SPF of commercial sunscreens as well as the extracts of the two plant species tested. These pigments have potential as ingredients for a new product range of and, indeed, represent a new paradigm for sunscreens that utilize substances of biological origin. We discussed the biotechnological potential of these bacterial metabolites for use in commercial sunscreens, and the need for studies of mammalian cells to determine safety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The invasive aquatic plant species Elodea nuttallii could pose a considerable risk to European freshwater ecosystems based on its current distribution, rate of spread and potential for high biomass. However, little research has been conducted on the impacts of this species on native biota. This study takes an ecosystem-wide approach and examines the impact of E. nuttallii on selected physicochemical parameters (dissolved oxygen and pH), algae, invertebrate and macrophyte communities. Elodea nuttallii had small but significant impacts on plant, invertebrate and algal species. The richness of algal periphyton was lower on E. nuttallii than on native macrophytes. The taxonomic composition of invertebrate communities associated with E. nuttallii differed from that associated with similar native plant species, but did not differ in terms of total biomass or species richness. Macrophyte species richness and total cover were positively correlated with percentage cover of E. nuttallii. Not all macrophyte species responded in the same way to E. nuttallii invasion; cover of the low-growing species, Elodea canadensis and charophytes were negatively correlated with E. nuttallii cover, whilst floating-rooted plants were positively correlated with E. nuttallii cover. All observed differences in the macrophyte community were small relative to other factors such as nutrient levels, inter-annual variation and differences between sites. Despite this, the observed negative association between E. nuttallii and charophytes is a key concern due to the rarity and endangered status of many charophyte species.