91 resultados para Tri-State Modulation and Control
A new spatial fix for Capitalist crisis? Immigrant labour, state borders and ostracising imperialism
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].
Resumo:
The primary purpose of this experiment was to determine if left hand reaction time advantages in manual aiming result from a right hemisphere attentional advantage or an early right hemisphere role in movement preparation. Right-handed participants were required to either make rapid goal-directed movements to small targets or simply lift their hand upon target illumination. The amount of advance information about the target for a particular trial was manipulated by precuing a subset of potential targets prior to the reaction time interval. When participants were required to make aiming movements to targets in left space, the left hand enjoyed a reaction advantage that was not present for aiming in right space: or simple finger lifts. This advantage was independent of the amount or type of advance information provided by the precue. This finding supports the movement planning hypothesis. With respect to movement execution, participants completed their aiming movements more quickly when aiming with their right hand, particularly in right space. This right hand advantage in right space was due to the time required to decelerate the movement and to make feedback-based adjustments late in the movement trajectory. (C) 2001 Academic Press.
Resumo:
Solid-state NMR and TEM were used to quantitatively examine the evolution of clay morphology upon equibiaxial stretching of polypropylene/montmorillonite (PP-MMT) nanocomposites up to a stretch ratio (?= final length/initial length) of 3.5. 1 H spin-lattice relaxation times were measured by the saturation-recovery sequence. For the nanocomposites, initial portions of the magnetization recovery
curves (e~20 ms) were found to depend on v t, indicative of diffusion-limited relaxation and in agreement with calculations based on estimates of the spin-diffusion barrier radius surrounding the paramagnetic centers in the clay, the electron-nucleus coupling constant, and the spin-diffusion coefficient. Initial slopes of these magnetization recovery curves directly correlated with the fraction of clay/polymer interface. New clay surface was exposed as a near linear function of strain. Long-time portions of the magnetization recovery curves yielded information on the average interparticle separations, which decreased slowly before reaching a plateau at ?=~2.5 as particles aligned. TEM images supported these findings and were used to define and quantify degrees of exfoliation and homogeneity from the NMR data. Exfoliation, defined as (platelets/ stack)-1, increased from 0.38 (unstretched) to 0.80 at ? = 3.5 for PP-MMT nanocomposites stretched at
150 C and 16 s-1. A lower stretch temperature, 145 C, which is slightly below melting onset, led to an exfoliation degree of 0.87 at ?= 2.8, consistent with the ability of higher melt viscosities to allow for higher shear stress transfer. Exposure of new clay surface is attributed to aggregate breakup and orientation at low strains (? e ~2) and to platelets sliding apart at higher strains.